Skip to main content
Log in

Tsunamis generated by landslides at the coast of conical islands: experimental benchmark dataset for mathematical model validation

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

This paper presents a new experimental campaign aimed at reproducing tsunamis generated by landslides at the flank of conical islands. In order to describe in high details the wave field around the island a special acquisition system, which consists of both fixed and movable wave gauges, has been employed. Indeed, each experiment has been repeated several times by changing the configuration of the movable gauges, then obtaining a single virtual experiment with high spatial resolution measurements. Fixed run-up gauges measure the waves at fixed locations to statistically quantify the repeatability of the experiments. Selected experimental results are illustrated within the paper that is mainly aimed at defining a benchmark dataset, available on request, for the development/calibration/validation of analytical and numerical models of tsunamis generated by landslides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bellotti G, Di Risio M, De Girolamo P (2009) Feasibility of tsunami early warning systems for small volcanic islands. Nat Hazards Earth Syst Sci 9(6):1911–1919

    Article  Google Scholar 

  • Briggs M, Synolakis C, Harkins G, Green D (1995a) Laboratory experiments of tsunami runup on a circular island. Pure Appl Geophys 144(3-4):569–593. doi:10.1007/BF00874384

    Article  Google Scholar 

  • Briggs M, Synolakis C, Harkins G, Hughes S (1995b) Large scale three-dimensional laboratory measurements of tsunami inundation. Adv Nat Technol Hazards Res 4:129–150

    Article  Google Scholar 

  • Cecioni C, Romano A, Bellotti G, Di Risio M, de Girolamo P (2011) Real-time inversion of tsunamis generated by landslides. Nat Hazards Earth Syst Sci 11:2511–2520

    Article  Google Scholar 

  • Cho YS, Liu PLF (1999) Crest-length effects in nearshore tsunami run-up around islands. J Geophys Res 104(C4):7907–7913. doi:10.1029/1999JC900012

    Article  Google Scholar 

  • Cho YS, Park KY, Lin TH (2004) Run-up heights of nearshore tsunamis based on quadtree grid system. Ocean Eng 31(8 - 9):1093–1109. doi:10.1016/j.oceaneng.2003.10.011

    Article  Google Scholar 

  • Di Risio M, Sammarco P (2008) Analytical modeling of landslide-generated waves. J Waterw Port Coast Ocean Eng 134(1):53–60

    Article  Google Scholar 

  • Di Risio M, Bellotti G, Panizzo A, De Girolamo P (2009a) Three-dimensional experiments on landslide generated waves at a sloping coast. Coast Eng 56(5-6):659–671. doi:10.1016/j.coastaleng.2009.01.009

    Article  Google Scholar 

  • Di Risio M, De Girolamo P, Bellotti G, Panizzo A, Aristodemo F, Molfetta MG, Petrillo AF (2009b) Landslide-generated tsunamis runup at the coast of a conical island: new physical model experiments. J Geophys Res Oceans 114. doi: 10.1029/2008JC004858

  • Di Risio M, De Girolamo P, Beltrami G (2011) Forecasting landslide generated tsunamis: a review. In: Marner N-A (ed) The tsunami threat - research and technology

  • Enet F, Grilli ST (2007) Experimental study of tsunami generation by three-dimensional rigid underwater landslides. J Waterw Port Coast Ocean Eng ASCE 133(6):442–454. doi:10.1061/(ASCE)0733-950X(2007)133:6(442)

    Article  Google Scholar 

  • Fritz HM, Mohammed F, Yoo J (2009) Lituya bay landslide impact generated mega-tsunami 50th anniversary. Pure Appl Geophys 166(1-2):153–175

    Article  Google Scholar 

  • Grilli ST, Watts P (2003) Underwater landslide shape, motion, deformation, and tsunami generation. In: EGS - AGU - EUG Joint Assembly, p 13216

  • Johnson RS (2007) Edge waves: theories past and present. Philos Trans R Soc A Math Phys Eng Sci 365(1858):2359–2376. doi:10.1098/rsta.2007.2013

    Article  Google Scholar 

  • Liu PLF, Yeh H (1996) The generation of edge waves by a wave-maker. Phys Fluids 8(8):2060–2065. doi:10.1063/1.869008

    Article  Google Scholar 

  • Liu PLF, Cho YS, Briggs MJ, Kanoglu U, Synolakis CE (1995) Runup of solitary waves on a circular island. J Fluid Mech 302:259–285. doi:10.1017/S0022112095004095

    Article  Google Scholar 

  • Liu PLF, Yeh H, Lin P, Chang K, Cho Y (1998) Generation and evolution of edge-wave packets. Phys Fluids 10(7):1635–1657. doi:10.1063/1.869682

    Article  Google Scholar 

  • Lynett P, Liu PLF (2005) A numerical study of the run-up generated by three-dimensional landslides. J Geophys Res Oceans 110(C3). doi: 10.1029/2004JC002443

  • Miller D (1960) Giant waves in Lituya Bay, Alaska: a timely account of the nature and possible causes of certain giant waves, with eyewitness reports of their destructive capacity. Professional paper, U.S. Government Printing Office

  • Mohammed F, Fritz HM (2012) Physical modeling of tsunamis generated by three-dimensional deformable granular landslides. J Geophys Res Oceans (1978–2012) 117(C11)

  • Montagna F, Bellotti G, Di Risio M (2011) 3d numerical modeling of landslide-generated tsunamis around a conical island. Nat Hazards 58(1):591–608

    Article  Google Scholar 

  • Panizzo A, De Girolamo P, Di Risio M, Maistri A, Petaccia A (2005) Great landslide events in Italian artificial reservoirs. Nat Hazards Earth Syst Sci 5(5):733–740. doi:10.5194/nhess-5-733-2005

    Article  Google Scholar 

  • Pelinovsky E, Poplavsky A (1996) Simplified model of tsunami generation by submarine landslides. Phys Chem Earth 21(1 - 2):13–17

    Article  Google Scholar 

  • Renzi E, Sammarco P (2010) Landslide tsunamis propagating around a conical island. J Fluid Mech 650:251–285. doi:10.1017/S0022112009993582

    Article  Google Scholar 

  • Romano A, Bellotti G, Di Risio M (2013) Wavenumber–frequency analysis of the landslide-generated tsunamis at a conical island. Coast Eng 81:32–43

    Article  Google Scholar 

  • Russell JS (1845) Report on waves. In: 14th meeting of the British Association for the Advancement of Science, pp 311–390

  • Sammarco P, Renzi E (2008) Landslide tsunamis propagating along a plane beach. J Fluid Mech 598:107–119. doi:10.1017/S0022112007009731

    Article  Google Scholar 

  • Synolakis CE, Bardet JP, Borrero JC, Davies HL, Okal EA, Silver EA, Sweet S, Tappin DR (2002) The slump origin of the 1998 Papua New Guinea tsunami. Proc R Soc Lond A Math Phys Eng Sci 458:763–789. doi:10.1098/rspa.2001.0915

    Article  Google Scholar 

  • Tinti S, Manucci A, Pagnoni G, Armigliato A, Zaniboni F (2005) The 30 December 2002 landslide-induced tsunamis in Stromboli: sequence of the events reconstructed from the eyewitness accounts. Natural Hazards and Earth System Science 5(6):763–775, URL http://hal.archives-ouvertes.fr/hal-00299290

  • Ursell F (1952) Edge waves on a sloping beach. Proc R Soc Lond A Math Phys Sci 214(1116):79–97. doi:10.1098/rspa.1952.0152

    Article  Google Scholar 

  • Watts P (1998) Wavemaker curves for tsunamis generated by underwater landslides. J Waterw Port Coast Ocean Eng 124(3):127–137. doi:10.1061/(ASCE)0733-950X(1998)124:3(127)

    Article  Google Scholar 

  • Watts P (2000) Tsunami features of solid block underwater landslides. J Waterw Port Coast Ocean Eng 126(3):144–152. doi:10.1061/(ASCE)0733-950X(2000)126:3(144)

    Article  Google Scholar 

  • Watts P, Grilli S, Tappin D, Fryer G (2005) Tsunami generation by submarine mass failure. II: Predictive equations and case studies. J Waterw Port Coast Ocean Eng 131(6):298–310. doi:10.1061/(ASCE)0733-950X(2005)131:6(298)

    Article  Google Scholar 

  • Yeh H, Liu PLF, Briggs M, Synolakis CE (1994) Propagation and amplification of tsunamis at coastal boundaries. Nature 372(6504):353–355. doi:10.1038/372353a0

    Article  Google Scholar 

  • Yim S, Yuk D, Panizzo A, Di Risio M, Liu PF (2008) Numerical simulations of wave generation by a vertical plunger using RANS and SPH models. J Waterw Port Coast Ocean Eng 134(3):143–159

    Article  Google Scholar 

Download references

Acknowledgments

The research described in this paper is funded by the Italian Ministry of Research within the PRIN2007 research project “Development and validation of hydraulic and geologic tools for supporting a Tsunami Early Warning System. Implementation to the Stromboli (Eolie) landslide case.” The author wishes to thank Eng. Michele Di Lazzaro (Roma Tre University, Italy) that provided the ultrasound sensors. Mario Nardi and Lucio Matergia, the technicians of LIAM (University of L’Aquila), are acknowledged for their skills in building physical models.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Romano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romano, A., Di Risio, M., Bellotti, G. et al. Tsunamis generated by landslides at the coast of conical islands: experimental benchmark dataset for mathematical model validation. Landslides 13, 1379–1393 (2016). https://doi.org/10.1007/s10346-016-0696-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-016-0696-4

Keywords

Navigation