Skip to main content

Advertisement

Log in

Decrease of size of hummocks with downstream distance in the rockslide-debris avalanche deposit at Iriga volcano, Philippines: similarities with Japanese avalanches

  • Technical Note
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

A morphometric investigation of the longitudinal distribution of hummocks at the southeastern foot of Iriga volcano in the Philippines showed that hummock size decreases away from the volcano. Aerial photographs and GIS analysis revealed that the size–distance relationship can be expressed as the exponential function A = α exp (−β D), where A is the area of a hummock and D is its distance from the source. This relationship is the same as that observed previously for freely spreading debris avalanches in Japan, including two avalanches at Bandai volcano. This size–distance relationship provides information about the physical characteristics of the event: the α value shows a strong correlation with the volume of the collapsed mass of the volcanic edifice, and the β value shows a strong correlation with the coefficient of friction of the debris avalanche. Thus, morphometric analysis of hummocks created by a volcanic avalanche illuminates both the physical properties of the volcanic body and the mobility of the avalanche. For the Iriga debris avalanche, the observed longitudinal hummock distribution is clearly a function of the volume of the collapsed mass and the coefficient of friction of the avalanche. The relationships so defined appear to be a geometric effect related to the areal extent of freely spreading hummocky avalanche deposits, especially their longitudinal dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Aguila LG, Newhall CG, Miller CD, Listanco EL (1986) Reconnaissance geology of a large debris avalanche from Iriga volcano, Philippines. Philipp J Volcanol 3:54–72

    Google Scholar 

  • Alloway B, McComb P, Neall V, Vucetich C, Gibb J, Sherburn S, Stirling M (2005) Stratigraphy, age, and correlation of voluminous debris-avalanche events from an ancestral Egmont Volcano: Implications for coastal plain construction and regional hazard assessment. J R Soc N Z 35:229–267

    Article  Google Scholar 

  • Andrade S, van Wyk de Vries B (2010) Structural analysis of the early stages of catastrophic stratovolcano flank-collapse using analogue models. Bull Volcanol 72:771–789

    Article  Google Scholar 

  • Begét JE (2000) Volcanic tsunamis. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic Press, San Diego, pp 1005–1013

    Google Scholar 

  • Belousova A, Belousova M, Listanco E (2011) The youngest eruptions and edifice collapse of Iriga volcano, Philippines. IUGG General Assembly, Melbourne

    Google Scholar 

  • Capra L, Macias JL (2002) The cohesive Naranjo debris-flow deposit (10 km3): a dam breakout flow derived from the Pleistocene debris-avalanche deposit of Nevado de Colima volcano (Mexico). J Volcanol Geotherm Res 117:213–235

    Article  Google Scholar 

  • Carrasco-Núñez G, Díaz-Castellón R, Siebert L, Hubbard B, Sheridan MF, Rodríguez SR (2006) Multiple edifice-collapse events in the Eastern Mexican Volcanic Belt: the role of sloping substrate and implications for hazard assessment. J Volcanol Geotherm Res 158:151–176

    Article  Google Scholar 

  • Clavero JE, Sparks RSJ, Huppert HE (2002) Geological constraints on the emplacement mechanism of the Parinacota debris avalanche, northern Chile. Bull Volcanol 64:40–54

    Article  Google Scholar 

  • Crandell DR (1989) Gigantic debris avalanche of Pleistocene age from ancestral Mount Shasta volcano, California, and debris-avalanche hazard zonation. Bull US Geol Surv 1861:32

    Google Scholar 

  • Crandell DR, Miller CD, Glicken HX, Christiansen RL, Newhall CG (1984) Catastrophic debris avalanche from ancestral Mount Shasta volcano, California. Geology 12:143–146

    Article  Google Scholar 

  • Dufresne A, Davies TR (2009) Longitudinal ridges in mass movement deposits. Geomorphology 105:171–181

    Google Scholar 

  • Geronimo-Catane S (1994) Mode of emplacement of two debris-avalanche deposits at Banahao volcano, southern Luzon, Philippines. Bull Volcanol Soc Jpn 39:113–127

    Google Scholar 

  • Glicken H (1996) Rockslide-debris avalanche of May 18, 1980, Mount St. Helens volcano, Washington. USGS Open-file Report 96–677:1–90

  • Inokuchi T (1988) Gigantic landslides and debris avalanches on volcanoes in Japan—case studies on Bandai, Chokai and Iwate volcanoes. Rep Nat Res Cent Disas Preve 41:163–275 (in Japanese with English abstract)

    Google Scholar 

  • Kienle J, Kowalik Z, Murty TS (1987) Tsunamis generated by eruption from Mt. St. Augustine volcano, Alaska. Science 236:1442–1447

    Article  Google Scholar 

  • Lagmay AMF, van Wyk de Vries B, Kerle N, Pyle DM (2000) Volcano instability induced by strike-slip faulting. Bull Volcanol 62:331–346

    Article  Google Scholar 

  • Lipman PW, Mullineaux DR (eds) (1981) The 1980 eruptions of Mount St. Helens, Washington. USGS Professional Paper 1250, pp 844

  • Lipman PW, Normark WR, Moore JG, Wilson JBG, Gutmacher CE (1988) The giant submarine Alika debris slide, Mauna Loa, Hawaii. J Geophys Res 89:4279–4299

    Article  Google Scholar 

  • MicroImages (1997) Reference Manual for TNTmips. http://www.microimages.com

  • Mizukoshi H, Murakami H (1997) Quantitative estimation of the Kobandai collapse volume using a pre-collapse map “Der Bandaisan”. Trans JGU 18:21–36 (in Japanese with English abstract)

    Google Scholar 

  • Mizukoshi H, Hoshino M, Yonechi F, Nakamura Y, Tsuzawa M, Koarai M, Ohya T, Kitahara T, Takeda R (1994) Former terrain model of Bandai volcano before the 1888 collapse. Earth Planetary Science and Related Society, summary of 1994 annual meeting, 357

  • Moriya I (1980) “Bandaian eruption” and landforms associated with it. In: Executive Committee for memory of retirement of Prof. K. Nishimura (ed) Collection of articles in memory of retirement of Prof. K. Nishimura from Tohoku University, Faculty of Science, Tohoku University, Sendai, pp 214–219 (in Japanese with English abstract)

  • Moriya I (1988) Geomorphological development of Bandai volcano. J Geogr 97:293–300 (in Japanese)

    Article  Google Scholar 

  • Nakamura Y, Glicken H (1997) Debris avalanche deposits of the 1888 eruption, Bandai volcano. In: Research Group for the Origin of Debris Avalanche Research (ed) Bandai Volcano—recent progress on hazard prevention. Nat Res Inst Earth Sci Disas Prev, Tsukuba, Japan, pp 135–147

  • Paguican EMR, van Wyk de Vries B, Lagmay AMF (2012a) Volcano-tectonic controls and emplacement kinematics of the Iriga debris avalanches (Philippines). Bull Volcanol 74:2067–2081

    Article  Google Scholar 

  • Paguican EMR, van Wyk de Vries B, Lagmay AMF (2012b) Hummocks: how they form and how they evolve in rockslide-debris avalanches. Landslides. doi:10.1007/s10346-012-0368-y

    Google Scholar 

  • Sekiya S, Kikuchi Y (1889) The eruption of Bandaisan. J Coll Sci Imp Univ Jpn 3:91–172

    Google Scholar 

  • Shea T, van Wyk de Vries B (2008) Structural analysis and analogue modeling of the kinematics and dynamics of rockslide avalanches. Geosphere 4:657–686

    Article  Google Scholar 

  • Shea T, van Wyk de Vries B (2010) Collapsing volcanoes: the sleeping giants’ threat. Geol Today 26:72–77

    Article  Google Scholar 

  • Siebert L (1984) Large volcanic debris avalanches: characteristics of source areas, deposits, and associated eruptions. J Volcanol Geotherm Res 22:163–197

    Article  Google Scholar 

  • Siebert L (1992) Threats from debris avalanches. Nature 356:658–659

    Article  Google Scholar 

  • Siebert L, Glicken H, Ui T (1987) Volcanic hazards from Bezymianny- and Bandai-type eruptions. Bull Volcanol 49:435–459

    Article  Google Scholar 

  • Silver E, Day S, Ward S, Hoffmann G, Llanes P, Driscoll N, Appelgate B, Saunders S (2009) Volcano collapse and tsunami generation in the Bismarck Volcanic Arc, Papua New Guinea. J Volcanol Geotherm Res 186:210–222

    Article  Google Scholar 

  • Sosio R, Crosta GB, Hungr O (2012) Numerical modeling of debris avalanche propagation from collapse of volcanic edifices. Landslides 9:315–334

    Article  Google Scholar 

  • Takarada S, Ui T, Yamamoto Y (1999) Depositional features and transportation mechanism of valley-filling Iwasegawa and Kaida debris avalanches, Japan. Bull Volcanol 60:508–522

    Article  Google Scholar 

  • ten Brink US, Geist EL, Andrews BD (2006) Size distribution of submarine landslides and its implication to tsunami hazard in Puerto Rico. Geophys Res Lett 33, L11307. doi:10.1029/2006GL026125

    Article  Google Scholar 

  • ten Brink US, Barkan R, Andrews BD, Chaytor JD (2009) Size distributions and failure initiation of submarine and subaerial landslides. Earth Planet Sci Lett 287:31–42

    Article  Google Scholar 

  • Thompson N, Bennett MR, Petford N (2010) Development of characteristic volcanic debris avalanche deposit structures: new insight from distinct element simulations. J Volcanol Geotherm Res 192:191–200

    Article  Google Scholar 

  • Thouret J-C (2005) The stratigraphy, depositional processes, and environment of the late Pleistocene Polallie-period deposits at Mount Hood volcano, Oregon, USA. Geomorphology 70:12–32

    Article  Google Scholar 

  • Ui T (1983) Volcanic dry avalanche deposits—identification and comparison with nonvolcanic debris stream deposits. J Volcanol Geotherm Res 18:135–150

    Article  Google Scholar 

  • Ui T, Glicken H (1986) Internal structural variations in a debris-avalanche deposit from ancestral Mount Shasta, California, USA. Bull Volcanol 48:189–194

    Article  Google Scholar 

  • Ui T, Takarada S, Yoshimoto M (2000) Debris avalanches. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic Press, San Diego, pp 617–626

    Google Scholar 

  • Vallance JW, Scott KM (1997) The Osceola mudflow from Mount Rainier: sedimentology and hazard implications of a huge clay-rich debris flow. GSA Bull 109:143–163

    Article  Google Scholar 

  • Vallance JW, Siebert L, Rose WI, Girón JR, Banks NG (1995) Edifice collapse and related hazards in Guatemala. J Volcanol Geotherm Res 66:337–355

    Article  Google Scholar 

  • Voight B, Janda RJ, Glicken H, Douglass PM (1983) Nature and mechanism of the Mount St. Helens rockslide-avalanche of May 1980. Geotechnique 33:243–273

    Article  Google Scholar 

  • Ward SN (2002) Slip-sliding away. Nature 415:973–974

    Article  Google Scholar 

  • Yamamoto T, Suto S (1996) Eruptive history of Bandai volcano, NE Japan, based on tephrastratigraphy. Bull Geol Surv Jpn 47:335–359 (in Japanese with English abstract)

    Google Scholar 

  • Yonechi F (1988) Aspect of the landscape of Bandai-san before the eruption. J Geogra 97:317–325 (in Japanese)

    Article  Google Scholar 

  • Yonechi F (2006) Bandaisan Bakuhatsu (The eruption of Bandai volcano). Kokon-Shoin, Tokyo, p 201 (in Japanese)

    Google Scholar 

  • Yonechi F, Chiba N, Ozawa A, Ishimaru S (1989) Large scale slope failure caused by Mt. Bandai's eruption in 1888. Abst 27th annual meeting Jpn Landslide Soc, 20–21 (in Japanese)

  • Yoshida H (2012) Evaluation of sector-collapse volume of Bandai volcano in 1888, Japan, in terms of the size-distance distribution pattern of debris avalanche hummocks. Trans JGU 33:45–60 (in Japanese with English abstract)

    Google Scholar 

  • Yoshida H (2013) Reexamination of volume loss due to the catastrophic sector-collapse causing the Okinajima debris avalanche of Bandai volcano, Japan. Trans JGU 34:1–19 (in Japanese with English abstract)

    Google Scholar 

  • Yoshida H, Sugai T, Ohmori H (2010) Longitudinal downsizing of hummocks by the freely-spreading volcanic debris avalanches in Japan. Quat Res (Tokyo) 49:55–67

    Article  Google Scholar 

  • Yoshida H, Sugai T, Ohmori H (2012) Size-distance relationship for hummocks on volcanic rockslide-debris avalanche deposits in Japan. Geomorphology 136:76–87

    Article  Google Scholar 

Download references

Acknowledgments

I acknowledge the following colleagues at PHIVOLCS for their invaluable help with data collection: Dr. Renato U. Solidum, Dr. Bartolome C. Bautista, Dr. Maria Leonila P. Bautista, Perla J. Delos Reyes, Maria Lynn P. Melosantos, and Analyn Aquino. I am also grateful to Emeritus Prof. N. Abeki and Emeritus Prof. I. Matsuda of Kanto Gakuin University for their help and support in my communications with PHIVOLCS. My thanks to Lee Siebert for his critical review to benefit the paper, and Prof. Toshihiko Sugai, and Emeritus Prof. Hiroo Ohmori of the University of Tokyo for their constructive comments and suggestions. This research was funded by a grant-in-aid from the Ministry of Education, Culture, Sports, Science, and Technology of the Japanese government (no. 22700858) and an annual grant-in-aid for scientific research from Meiji University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidetsugu Yoshida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshida, H. Decrease of size of hummocks with downstream distance in the rockslide-debris avalanche deposit at Iriga volcano, Philippines: similarities with Japanese avalanches. Landslides 10, 665–672 (2013). https://doi.org/10.1007/s10346-013-0414-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-013-0414-4

Keywords

Navigation