Skip to main content
Log in

Computational fluid dynamics modelling of landslide generated water waves

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

This paper describes the application of detailed computational fluid dynamics (CFD) to simulate the formation and propagation of waves generated by the impact of landslide material with water. The problem is schematised as a multiphase–multicomponent fluid flow: compressible air, water and transported alluvial material. The landslide simulation is performed by means of a hybrid approach: as a rigid solid body slipping down along an inclined slope until it starts penetrating the water body. The CFD model solves the Navier–Stokes equations with the RNG k-ɛ turbulence closure scheme and the volume of fluid multiphase method, which maintains the interface as a sharp front. The governing equations are solved using the commercial CFD code, FLUENT. The computed results are compared with experimental data reported in the literature. The model is then applied to simulate the 1958 Lituya bay Tsunami event with a 2D a simplified geometry and the results are compared to others found in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abadie S, Grilli S, Glockner S (2006) A coupled numerical model for tsunami generated by subaerial and submarine mass failures. In Proc. 30th Intl. Coastal Engng. Conf., San Diego, California, USA, 1420–1431

  • Abbott MB, Basco DR (1989) Computational fluid dynamics: an introduction for engineers Harlow, Essex, England: Longman Scientific & Technical. Wiley, New York

    Google Scholar 

  • Ataie-Ashtiani B, Nik-Khah A (2008) Impulsive waves caused by subaerial landslides. Environ Fluid Mech 8(3):263–280

    Article  Google Scholar 

  • Biscarini C, Esposito E, Porfido S, Violante C (2005) Hydrogeological risk analysis in coastal area. IHP—UNESCO 2005–2015 United Nations Decade for action—Water For Life

  • Esposito E, Porfido S, Violante C, Biscarini C (2004a) Il nubifragio dell'ottobre 1954 a Vietri sul mare–Costa di Amalfi, Salerno. Scenario ed effetti di una piena fluviale catastrofica in un’area di costa rocciosa. Pubbl. GNDCI n. 2870, ISBN 88-88885-03-X

  • Esposito E, Porfido S, Violante C, Biscarini C (2004b) Water events and historical flood recurrences in the Vietri sul Mare coastal area (Costiera Amalfitana, southern Italy). Proceedings of the UNESCO/IAHS/IWHA symposium on “The Basis of Civilization—Water Science”? Rome IAHS Publ 286:95–106

    Google Scholar 

  • Fluent 6.1 User’s guide (Fluent Inc. 2003)

  • Fritz HM (2002) Initial phase of landslide generated impulse waves. In: Minor H-E (ed) VAW-Mitteilung 178. Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH Zürich

  • Fritz HM, Hager WH, Minor HE (2001) Lituya bay case: rockslide impact and wave run-up. Sci Tsunami Hazards 19(1):3–22

    Google Scholar 

  • Galperin BA, Orszag SA (1993) Large Eddy simulation of complex engineering and geophysical flows. Cambridge University Press

  • Grilli ST, Watts P (1999) Modeling of waves generated by a moving submerged body: applications to underwater landslides. Eng Anal Bound Elem 23(8):645–656

    Article  Google Scholar 

  • Hall JV Jr, Watts GM (1953) Laboratory investigation of the vertical rise of solitary waves on impermeable slopes. Tech. Memo. 33, U.S. Army Corps of Engineers, Beach Erosion Board

  • Harbitz CB (1992) Model simulations of tsunamis generated by the Storegga slides. Mar Geol 105:1–21

    Article  Google Scholar 

  • Hargreaves DM, Morvan H, Wright NG (2007) Validation of the volume of fluid method for free surface calculation: the broad-crested weir. Engineering Applications of Computational Fluid Mechanics 2:136–146

    Google Scholar 

  • Heinrich P (1992) Nonlinear Water Waves Generated by Submarine and Aerial Landslides. J Waterw Port Coast Ocean Eng. ASCE 118(3):249–266

    Article  Google Scholar 

  • Heinrich P, Mangeney A, Guibourg S, Roche R, Boudon G, Cheminée JL (1998) Simulation of water waves generated by a potential debris avalanche in Montserrat, Lesser Antilles. Geophys Res Lett 25:3697–3700

    Article  Google Scholar 

  • Hirsch C (1992) Numerical computation of internal and external flows. Wiley, New York

    Google Scholar 

  • Imamura F, Gica EC (1996) Numerical model for tsunami generation subaqueous landslide along a coast. Sci Tsunami Hazards 14:13–28

    Google Scholar 

  • Imteaz MMA, Imamura F (1995) Long waves in two-layers: governing equations and numerical model. Sci Tsunami Hazards 13:3–24

    Google Scholar 

  • Iwasaki S (1987) On the estimation of a tsunami generated by a submarine landslide. Proc Intl Tsunami Symp, Vancouver, BC, pp 134–38

  • Jiang L, LeBlond PH (1992) The coupling of a submarine slide and the surface waves which it generates. J Geoph Res 97(C8):12731–12744

    Article  Google Scholar 

  • Kamphuis JW, Bowering RJ (1970). Impulse waves generated by landslides. Proc. 12’h Coastal Engineering Con ASCE, pp 1575–588

  • Lin P, Liu PL-F (1998) A numerical study of breaking waves in the surf zone. J Fluid Mech 359:239–264

    Article  Google Scholar 

  • Mader CL (1999) Modeling the 1958 Lituya Bay mega-tsunami. Sci Tsunami Hazards 17(2):57–67

    Google Scholar 

  • Mader CL, Gittings ML (2002) Modeling the 1958 Lituya Bay mega-tsunami, II. Sci Tsunami Hazards 20:241–250

    Google Scholar 

  • Miller DJ (1960) Giant waves in Lituya Bay Alaska, USGS Professional Paper 354-C, Shorter Contributions to General Geology

  • Monaghan JJ, Kos A (1999) Solitary waves on a Cretan beach. J Waterw Port Coast Ocean Eng 125(3):145–154, doi:10.1061/(ASCE)0733-950X(1999)125:3(145)

    Article  Google Scholar 

  • Müller D (1995) Auflaufen und Überschwappen von Impulswellen an Talsperren. VAW-Mitteilung 137, Ed. Vischer D, Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH Zürich. (in German)

  • Nakayama T (1983) Boundary element analysis of nonlinear waterwave problems. Intl J Numer Methods Engng 19:953–970

    Article  Google Scholar 

  • Noda E (1970) Water waves generated by landslides. ASCE J Waterways, Harbours, and Coastal Engineering Division 96(4):835–855

    Google Scholar 

  • Panizzo A, De Girolamo P, Di Risio M, Maistri A, Petaccia A (2005) Great landslide events in Italian artificial reservoirs. Nat Hazards Earth Syst Sci 5:733–740

    Article  Google Scholar 

  • Pararas-Carayannis G (1999) Analysis of mechanism of tsunami generation in Lituya Bay. Sci Tsunami Hazards 17:193–206

    Google Scholar 

  • Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere, USA

    Google Scholar 

  • Pelinovsky E, Poplavsky A (1996) Simplified model of tsunami generation by submarine landslide. Phys Chem Earth 21(12):13–17

    Article  Google Scholar 

  • Rodi W (1984) Turbulence models and their application in hydraulics—a state of the art review. Presented by the IAHR Section on Fundamentals and Division II: Experimental and Mathematical Fluid Dynamics (2nd revised ed)

  • Synolakis CE (1987) The run-up of solitary waves. J Fluid Mech 185:523–545

    Article  Google Scholar 

  • Verriere M, Lenoir M (1992) Computation of waves generated by submarine landslides. Intl J Num Methods Fluids 14:403–421

    Article  Google Scholar 

  • Versteeg HK, Malalasekera W (1995) An introduction to computational fluid dynamics: the finite volume method. Addison Wesley Longman, Harlow

    Google Scholar 

  • Vinje T, Brevig P (1981) Numerical simulation of breaking waves. Adv Water Resour 4:77–82

    Article  Google Scholar 

  • Walder JS, Watts P, Sorensen OE, Janssen K (2003) Water waves generated by subaerial mass flows. J Geophys Res [Solid Earth] 108(5):2236–2255

    Article  Google Scholar 

  • Wieczorek GF, Geist EL, Motyka RJ, Jakob M (2007) Hazard assessment of the tidal inlet landslide and potential subsequent tsunami, Glacier Bay National Park. Alaska Landslides 4:205–215, doi:10.1007/s10346-007-0084-1

    Google Scholar 

  • Yakhot V, Orszag SA (1986) Renormalization group analysis of turbulence: I. Basic Theory. J Sci Comput 1(1):1–51

    Article  Google Scholar 

  • Youngs DL (1982) Time-dependent multi-material flow with large fluid distortion. In: Morton KW, Baines MJ (eds) Numerical methods for fluid dynamics. Academic, New York

    Google Scholar 

Download references

Acknowledgements

The author is grateful for the productive suggestions and the support of Prof. Gino Bella.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Biscarini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biscarini, C. Computational fluid dynamics modelling of landslide generated water waves. Landslides 7, 117–124 (2010). https://doi.org/10.1007/s10346-009-0194-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-009-0194-z

Keywords

Navigation