Skip to main content

Advertisement

Log in

Rock avalanching into a landslide-dammed lake causing multiple dam failure in Las Conchas valley (NW Argentina) — evidence from surface exposure dating and stratigraphic analyses

  • Original
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

Generally landslide dams which exist for several hundreds to thousands of years are considered as stable. We show with an example from the Argentine Andes that such dams can exist for several thousands of years but still may fail catastrophically. Multiple rock avalanches impounded two lakes with surface areas of ~8 km2 and ~600 km2, respectively, in Las Conchas valley, NW Argentina. Surface exposure dating (SED) by 10Be of the rock-avalanche deposits or landslide scars indicates that these landslides occurred at 15,300±2,000 yr and 13,550±900 yr. The dams were stable during a strong earthquake, as suggested by seismites within related lake sediments and by multiple coeval landslides in this region, which occurred at ~7.5 kyr. However, when a further rock-avalanche fell into the lower, smaller lake at 4,800±500 yr the dam downriver was destroyed, presumably by the resulting tsunami wave. The resulting flood also destroyed an additional rock-fall dam which had formed at ~5,630 yr 14C cal BP 30 km downriver. The new dam formed by the second rock avalanche was eroded prior to 3,630 yr 14C cal BP. This dam erosion coincides with an important climatic shift towards more humid conditions in the Central Andes. Our results show that instead of direct effects of strong seismicity on landslide dams, (1) landsliding into a landslide-dammed lake, (2) abrupt hydrological changes, and (3) climate change towards conditions related to enhanced run-off are processes which can produce failures of “quasi-stable” natural dams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3a
Fig. 4
Fig. 5a
Fig. 6a

Similar content being viewed by others

References

  • Abbott MB, Binford MW, Brenner M, Kelts K (1997) A 3,500 14C yr high-resolution record of water-level changes in Lake Titicaca, Bolivia/Peru. Quaternary Research 47:169–180

    Article  Google Scholar 

  • Abele G (1974) Bergstürze in den Alpen. Ausschüsse des Deutschen und Österreichischen Alpenvereins, München

  • Argollo J, Mourgiart P (1998) Escenarios paleohidrológicos y paleoclimáticos de los ultimos 25,000 años en los Andes Bolivianos. Bamberger Geographische Schriften 15:1–15

    Google Scholar 

  • Baker PA, Rigsby CA, Seltzer GO, Fritz SC, Lowenstein TK, Bacher NP, Veliz C (2001a) Tropical climate changes at millennial and orbital timescales on the Bolivian Altiplano. Nature 409:698–701

    Article  Google Scholar 

  • Baker PA, Seltzer GO, Fritz SC, Dunbar RB, Grove MJ, Tapia PM, Cross SL, Rowe HD, Broda JP (2001b) The history of South American tropical precipitation for the past 25,000 years. Science 291:640–643

    Article  Google Scholar 

  • Ballantyne CK, Stone JO, Fifield LK (1998) Cosmogenic Cl-36 dating of postglacial landsliding at The Storr, Isle of Skye, Scotland. The Holocene 8:347–351

    Article  Google Scholar 

  • Barla G, Dutto F, Mortara G (2000) Brenva glacier rock avalanche of 18 January 1997 on the Mont Blanc range, northwest Italy. Landslide News 13:2-5

    Google Scholar 

  • Baucom PC, Rigsby CA (1999) Climate and lake-level history of the northern Altiplano, Bolivia, as recorded in Holocene sediments of the Río Desaguadero. Journal of Sedimentary Research 69:597–611

    Google Scholar 

  • Bianchi AR, Yañez CE (1992) “Las precipitaciones en el noroeste Argentino”. Instituto Nacional de Tecnologia Agropecuaria, Salta

  • Blikra LH, Longva O, Braathan A, Anda E, Dehls JF, Stalsberg K (in press) Rock slope failures in Norwegian fjord areas: Examples, spatial distribution and temporal pattern. In: Evans SG, Scarascia Mugnozza G, Strom AL, Hermanns RL (eds) Massive rock slope failure: new models for hazard assessment. Kluwer, Dodrecht

  • Bookhagen B, Haselton K, Trauth MH (2001) Hydrological modelling of a Pleistocene landslide-dammed lake in the Santa Maria Basin, NW Argentina. Palaeogeography Palaeoclimatology Palaeoecology 169:113–127

    Article  Google Scholar 

  • Canuti P, Frassoni A, Natale L (1994) Failure of the Rio Paute landslide dam. Landslide News 8:6–7

    Google Scholar 

  • Canuti P, Casagli N, Ermini L (1998) The inventory of landslide dams in the Northern Apeninne and its use for forecast of induced flood hazard. In: Andah K (ed) Managing Hydro-geological disasters in a vulnerable environment. CNR-GNDC-UNESCO, Perugia, pp 189–202

  • Casagli N, Ermini L, Rosati G (2003) Determining grain size distribution of the material composing landslide dams in the Northern Apennines: sampling and processing methods. Engineering Geology 69:83–97

    Article  Google Scholar 

  • Clague JJ, Evans SG (1994) Formation and failure of natural dams in the Canadian Cordillera. Geological Survey of Canada, Bulletin 464:1–35

    Google Scholar 

  • Costa JE, Schuster RL (1988) The formation and failure of natural dams. Geological Society of America Bulletin 100:1,054–1,068

    Article  MATH  Google Scholar 

  • Cross SL, Baker PA, Seltzer GO, Fritz SC, Dunbar RB (2001) Late Quaternary climate and hydrology of tropical South America inferred from an isotopic and chemical model of Lake Titicaca, Bolivia and Peru. Quaternary Research 56:1–9

    Article  Google Scholar 

  • Dunai TJ (2000) Scaling factors for production rates of in situ produced cosmogenic nuclides: a critical reevaluation. Earth and Planetary Science Letters 176:157–169

    Article  Google Scholar 

  • Dunne J, Elmore D, Muzikar P (1999) Scaling factors for the rates of production of cosmogenic nuclides for geometric shielding and attenuation at depth on sloped surfaces. Geomorphology 27:3–11

    Article  MATH  Google Scholar 

  • Ermini L, Casagli N (2003) Prediction of the behaviour of landslide dams using a geomorphological dimensionless index. Earth Surface Processes and Landforms 28:31–47

    Article  Google Scholar 

  • Fauqué L, Tchilinguirian P (2002) Villavil rockslides, Catamarca Province, Argentina. In: Evans SG, DeGraff JV (eds) Catastrophic landslides: Effects, occurrence, and mechanism. GSA, Boulder, pp 303–324

  • Frenguelli J (1936) Investigaciones geológicas en la zona salteña del valle Santa Maria. Obra del Cincuentenario del Museo de La Plata 2:215–572

    Google Scholar 

  • Grier ME, Salfity JA, Allmendinger RW (1991) Andean reactivation of the Cretaceous Salta rift, northwestern Argentina. Journal of South American Earth Sciences 4:351–372

    Article  Google Scholar 

  • Groeber P (1916) Informe sobre las causas que han producido las crecientes del río Colorado (Territorios del Neuquén y La Pampa) en 1914. Dirección General de Minas, Geología e Hidrogeología, 11 (Serie B, Geología), Buenos Aires

  • Grosjean M, Cartajena I, Geyh MA, Nunez L (2003) From proxy data to paleoclimate interpretation; the mid-Holocene paradox of the Atacama Desert, northern Chile Late-Quaternary palaeoclimates of the southern tropical Andes and adjacent regions. Elsevier, Amsterdam, Netherlands, pp 247–258

  • Hanisch J (2000) Geotechnical assessment of the Usoi landslide dam and the right bank of Lake Sarez. In: Alford D, Schuster RL (eds) Usoi landslide dam and lake Sarez. United Nations Publication, New York and Geneva, pp 19–22

  • Haselton K, Hilley G, Strecker MR (2002) Average Pleistocene climatic patterns in the southern Central Andes: Controls on mountain glaciation and paleoclimate implications. Journal of Geology 110:211–226

    Article  Google Scholar 

  • Hendron AJ, Jr., Patton FD (1985) The Vaiont Slide, a geotechnical analysis based on new geologic observations of the failure surface. US Army Corps of Engineers Waterways Experiment Station, Vicksburg, MS, United States

  • Hermanns RL, Strecker MR (1999) Structural and lithological controls on large Quaternary rock avalanches (sturzstroms) in arid northwestern Argentina. Geological Society of America Bulletin 111:934–948

    Article  Google Scholar 

  • Hermanns RL, Trauth MH, Niedermann S, McWilliams M, Strecker MR (2000) Tephrochronologic constraints on temporal distribution of large landslides in northwest Argentina. Journal of Geology 108:35–52

    Article  Google Scholar 

  • Hermanns RL, Niedermann S, Villanueva Garcia A, Sosa Gomez J, Strecker MR (2001) Neotectonics and catstrophic failure of mountain fronts in the southern intra-Andean Puna Plateau, Argentina. Geology 29:619–623

    Article  Google Scholar 

  • Hermanns RL, Niedermann S, Villanueva Garcia A, Schellenberger A (in press) Rock avalanching in the NW Argentine Andes as a result of complex interactions of lithologic, structural and topographic boundary conditions, climate change and active tectonics. In: Evans SG, Scarascia Mugnozza G, Strom AL, Hermanns RL (eds) Massive rock slope failure: new models for hazard assessment. Kluwer, Dodrecht

  • Hewitt K (1998) Catastrophic landslides and their effects on the Upper Indus streams, Karakoram Himalaya, northern Pakistan. Geomorphology 26:47–80

    Article  Google Scholar 

  • Ivy-Ochs S, Heuberger H, Kubik PW, Kerschner H, Bonani G, Frank M, Schlüchter C (1998) The age of the Köfels event. Relative, 14C and cosmogenic isotope dating of an early Holocene landslide in the central Alps (Tyrol, Austria). Zeitschrift für Gletscherkunde und Glazialgeologie 34:57–70

    Google Scholar 

  • Ivy-Ochs SD, Schlüchter C, Kubik PW, Synal HA, Beer J, Kerschner H (1996) The exposure ages of an Egesen moraine at Julier Pass, Switzerland, measured with the cosmogenic radionuclides 10Be, 26Al and 36Cl. Eclogae Geologicae Helveticae 89:1,049–1,063

    Google Scholar 

  • Jerz H (1999) Nacheiszeitliche Bergstürze in den Bayerischen Alpen. In: Fischer K (ed) Massenbewegungen und Massentransporte in den Alpen als Gefahrenpotential. Borntraeger, Berlin Stuttgart, pp 31–40

  • Jordan TE, Isacks BL, Allmendinger RW, Brewer JA, Ramos VA, Ando CJ (1983) Andean tectonics related to geometry of subducted Nazca plate. Geological Society of American Bulletin 94:341–361

    Google Scholar 

  • Keefer DK, deFrance SD, Moseley ME, Richardson III JB, Satterlee DR, Day-Lewis A (1998) Early maritime economy and El Niño Events at Quebrada Tacahuay, Peru. Science 281:1,833–1,835

    Article  Google Scholar 

  • Keefer DK, Moseley ME, deFrance SD (2003) A 38,000-year record of floods and debris flows in the Ilo region of southern Peru and its relation to El Niño events and great earthquakes. Palaeogeography Palaeoclimatology Palaeoecology 194:41–77

    Article  Google Scholar 

  • Kohl CP, Nishiizumi K (1992) Chemical isolation of quartz for measurement of in-situ-produced cosmogenic nuclides. Geochimica et Cosmochimica Acta 56:3,583–3,587

    Article  Google Scholar 

  • Kubik PW, Ivy-Ochs S, Masarik J, Frank M, Schlüchter C (1998) 10Be and 26Al production rates deduced from an instantaneous event within the dendro-calibration curve, the landslide of Köfels, Ötz Valley, Austria. Earth and Planetary Science Letters 161:231–241

    Article  Google Scholar 

  • Latorre C, Betancourt JL, Rylander KA, Quade J, Matthei O (2003) A vegetation history from the arid Prepuna of northern Chile (22–23 degrees S) over the last 13,500 years. Palaeogeography Palaeoclimatology Palaeoecology 194:223–246

    Article  Google Scholar 

  • Marwan N, Trauth MH, Vuille M, Kurths J (2003) Comparing modern and Pleistocene ENSO-like influences in NW Argentina using nonlinear time series analysis methods. Climate Dynamics 21:317–326

    Article  Google Scholar 

  • Masarik J, Kollar D, Vanya S (2000) Numerical simulation of in situ production of cosmogenic nuclides: Effects of irradiation geometry. Nuclear Instruments and Methods in Physics Research B 172:786–789

    Article  Google Scholar 

  • McSaveney MJ (2002) Recent rockfalls and rock avalanches in Mount Cook National Park, New Zealand. In: Evans SG, DeGraff JV (eds) Catastrophic landslides: Effects, Occurrence and Mechanism. The Geological Society of America, Boulder, pp 35–70

  • McSaveney MJ, Chinn TJ, Hancox GT (1992) Mount Cook rock avalanche of 14 December 1991, New Zealand. Landslide News 6:32–34

    Google Scholar 

  • Mon R (1976) The structure of the eastern border of the Andes in north-western Argentina. Geologische Rundschau 65:211–222

    Google Scholar 

  • Müller AB (2001) Die Änderungen von Niederschlagsverteilungen und deren Einfluß auf die Provenienz von Seesedimenten während der letzten 30.000 Jahre in den nordwestargentinischen Anden. Diploma thesis, Inst. Geowissenschaften, University of Potsdam

  • Nicoletti PG, Parise M, Miccadei E (1993) The Scanno rock avalanche (Abruzzi, South-Central Italy). Bolletino Societa Geologica Italiana 112:523–535

    Google Scholar 

  • Niedermann S (2002) Cosmic-ray-produced noble gases in terrestrial rocks: dating tools for surface processes. In: Porcelli D, Ballentine CJ, Wieler R (eds) Noble gases in geochemistry and cosmochemistry, Reviews in Mineralogy and Geochemistry, 47:731–784

  • Obermeier SF (1996) Using liquefaction-induced features for paleoseismic analysis. In: McCalpin JP (ed) Paleoseismology. Academic Press, San Diego, pp 331–396

  • Omarini RH (1983) Caracterización litológica, diferenciación y génesis de la Formación Puncoviscana entre el Valle de Lerma y la Faja Eruptiva de la Puna. Unpublished PhD thesis. Unpublished PhD thesis, Salta

  • Plafker G, Ericksen GE (1978) Nevados Huascaran avalanches, Peru. In: Voight B (ed) Rockslides and avalanches. Elsevier, Amsterdam, pp 277–314

  • Plaza-Nieto G, Yepes H, Schuster RL (1990) Landslide dam on the Pisque river, northern Ecuador. Landslide News 4:2–4

    Google Scholar 

  • Plaza-Nieto G, Zevallo O (1994) The 1993 La Josefina rockslide and Rio Paute landslide dam, Ecuador. Landslide News 8:4–7

    Google Scholar 

  • Reyes FC, Salfity JA (1973) Consideraciones sobre la estratigrafía del Cretácico (Subgrupo Pirgua) del noroeste Argentino. V Congresso Geológico Argentino, pp 355–385

  • Rial JA (1996) The anomalous seismic response of the ground at the Tarzana Hill site during the Northridge 1994 Southern California earthquake; a resonant, sliding block? Bulletin of the Seismological Society of America 86:1,714–1,723

    Google Scholar 

  • Salfity JA, Marquillas RA (1994) Tectonic and Sedimentary Evolution of the Cretaceous-Eocene Salta Group Basin, Argentina. In: JA S (ed) Cretaceous tectonics of the Andes. Friedrich Vieweg und Sohn, Braunschweig-Wiesbaden, pp 266–315

  • Schuster RL (2000) A worldwide perspective on landslide dams. In: Alford D, Schuster RL (eds) Usoi landslide dam and lake Sarez. United Nations Publication, New York and Geneva, pp 19–22

  • Schuster RL (in press) Impacts of landslide dams on mountain topography. In: Evans SG, Scarascia Mugnozza G, Strom AL, Hermanns RL (eds) Massive rock slope failure: new models for hazard assessment. Kluwer, Dodrecht

  • Semenza E, Sapigni M (1986) Carta e profili geologici della Valle de Vaionte zona limitrofe. In: Semenza E, Melidoro G (eds) Meeting 1963 Vaiont landslide, Ferrara 1986. Univ. of Ferrara, Ferrara

  • Servant M, Fontes JC (1978) Les lacs Quaternaires das hauts plateaux des Andes Boliviennes, Premières interprétations paléoclimatiques. Cahiers O.R.S.T.O.M. série géologie X 1:9–23

  • Strecker MR, Marrett RA (1999) Kinematic evolution of fault ramps and role in development of landslides and lakes in northwestern Argentine Andes. Geology 27:307–310

    Article  Google Scholar 

  • Strom AL (in press) Morphology and internal structure of rockslides and rock avalanches: grounds and constraints for their modelling. In: Evans SG, Scarascia Mugnozza G, Strom AL, Hermanns RL (eds) Massive rock slope failure: new models for hazard assessment. Kluwer, Dodrecht

  • Stuiver M, Reimer PJ, Braziunas TF (1998) High-precision radiocarbon age calibration of terrestrial and marine samples. Radiocarbon 40:1,127–1,151

    Google Scholar 

  • Swanson FJ, Oyagi N, Tominaga M (1986) Landslide dams in Japan Proceedings; Landslide dams; processes, risk, and mitigation. American Society of Civil Engineers, New York, United States, pp 131–145

  • Trauth MH, Strecker MR (1999) Formation of landslide-dammed lakes during a wet period between 40,000 and 25,000 yr BP in northwestern Argentina. Palaeogeography Palaeoclimatology Palaeoecology 153:277–287

    Article  Google Scholar 

  • Trauth MH, Alonso RA, Haselton KR, Hermanns RL, Strecker MR (2000) Climate change and mass movements in the NW Argentine Andes. Earth and Planetary Science Letters 179:243–256

    Article  Google Scholar 

  • Trauth MH, Bookhagen B, Marwam N, Strecker MR (2003a) Multiple landslide clusters record Quaternary climate changes in the NW Argentine Andes. Palaeogeography Palaeoclimatology Palaeoecology 194:109–121

    Article  Google Scholar 

  • Trauth MH, Bookhagen B, Müller AB, Strecker MR (2003b) Late Pleistocene climate change and erosion in the Santa Maria basin, NW Argentina. Journal of Sedimentary Research 73:82–90

    Google Scholar 

  • Wayne WJ (1999) Alemanía rockfall dam: A record of a mid-Holocene earthquake and catastrophic flood in northwestern Argentina. Geomorphology 27:295–306

    Article  Google Scholar 

  • Weichert D, Horner RB, Evans SG (1994) Seismic signatures of landslides; the 1990 Brenda Mine collapse and the 1965 Hope rockslides. Bulletin of the Seismological Society of America 84:1,523–1,532

    Google Scholar 

  • Weidinger JT, Wang J, Ma N (2002) The earthquake-triggered rock avalanche of Cui Hua, Qin Ling Mountains, P. R. of China — the benefits of a lake-damming prehistoric natural disaster. Quaternary International 93–94:207–214

    Google Scholar 

  • Wirrmann D, Mourguiart P (1995) Late Quaternary spatio-temporal limnological variations in the Altiplano of Bolivia and Peru. Quaternary Research 43:344–354

    Article  Google Scholar 

Download references

Acknowledgements

This project was sponsored by the Deutsche Forschungsgemeinschaft (as part of a Graduate College 450 grant to Hermanns), the GeoForschungsZentrum Potsdam, and the Collaborative Research Center 267. We thank A. Villanueva Garcia for field assistance, R. Alonso for logistical support in Salta, and we are grateful to M. Strecker, M. Trauth, and R. Hatfield for fruitful discussions. R.L.H. acknowledges B. Merz, G. Borm, J. Erzinger, K. Czurda, and F. Gehbauer for their encouragement and help. We thank H. Yamagishi, M. Geertsema and an anonymous reviewer for their helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reginald L. Hermanns.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hermanns, R.L., Niedermann, S., Ivy-Ochs, S. et al. Rock avalanching into a landslide-dammed lake causing multiple dam failure in Las Conchas valley (NW Argentina) — evidence from surface exposure dating and stratigraphic analyses. Landslides 1, 113–122 (2004). https://doi.org/10.1007/s10346-004-0013-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-004-0013-5

Keywords

Navigation