Skip to main content

Advertisement

Log in

Weather factors controlling growth of Oriental beech are on the turn over the growing season

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

A better understanding of the ecophysiological basis of wood formation by monitoring radial growth over the whole vegetation period may help to explain possible discrepancies between long-term average climate–growth relationships and short-term climatic impacts on tree growth. To understand how growth–climate associations of Oriental beech vary throughout a vegetation period, we studied seasonal growth patterns of high-elevation beech trees growing in the north of Iran by collecting wood anatomical micro-cores in 10 to bi-weekly intervals and measuring stem increment with high-resolution electronic dendrometers. Wood formation was for two consecutive years with contrasting inter-annual climate conditions (2011 and 2012). We divided the growing period into three equal time phases and related daily climate variability to the cambial growth in each phase. The pattern of climate–growth relationships varies over a complete growing season and between years: in both study years, trees responded homogenously at the beginning and at the end of the growing season, but showed opposing influence of relative humidity during spring and early summer (June and July). Temperature as the main driver of xylogenesis had a stimulating effect on growth at the beginning of the growing season, but had negative effects on radial increment during late June and July mainly due to the excess of ambient temperatures over an optimum threshold. Higher temperature in late June and July 2011 compared with those of 2012 led to a significantly narrower tree ring in 2011, despite the similar sums/means of annual climate parameters in these two years. Since regional climate change scenarios expect higher temperature and reduced moisture conditions in future, radial growth of beech in the north of Iran may be adversely affected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Antonova G, Stasova V (1993) Effects of environmental factors on wood formation in Scots pine stems. Trees 7:214–219. doi:10.1007/BF00202076

    Article  Google Scholar 

  • Beedlow PA, Lee EH, Tingey DT, Waschmann RS, Burdick CA (2013) The importance of seasonal temperature and moisture patterns on growth of Douglas-fir in western Oregon, USA. Agric For Meteorol 169:174–185. doi:10.1016/j.agrformet.2012.10.010

    Article  Google Scholar 

  • Begum S, Nakaba S, Oribe Y, Kubo T, Funada R (2007) Induction of cambial reactivation by localized heating in a deciduous hardwood Hybrid Poplar (Populus sieboldii × P. grandidentata). Ann Bot 100:439–447. doi:10.1093/aob/mcm130

    Article  PubMed  PubMed Central  Google Scholar 

  • Begum S, Nakaba S, Yamagishi Y, Oribe Y, Funada R (2013) Regulation of cambial activity in relation to environmental conditions: understanding the role of temperature in wood formation of trees. Physiol Plant 147:46–54. doi:10.1111/j.1399-3054.2012.01663.x

    Article  CAS  PubMed  Google Scholar 

  • Biondi F, Waikul K (2004) DENDROCLIM2002: a C ++ program for statistical calibration of climate signals in tree-ring chronologies. Comput Geosci 30:303–311. doi:10.1016/j.cageo.2003.11.004

    Article  Google Scholar 

  • Briffa KR, Schweingruber FH, Jones PD, Osborn TJ, Shiyatov SG, Vaganov EA (1998) Reduced sensitivity of recent tree-growth to temperature at high northern latitudes. Nature 391:678–682

    Article  CAS  Google Scholar 

  • Brooks A, Farquhar GD (1985) Effect of temperature on the CO2/O2 specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase and the rate of respiration in the light. Planta 165:397–406. doi:10.1007/BF00392238

    Article  CAS  PubMed  Google Scholar 

  • Camarero JJ, Olano JM, Parras A (2010) Plastic bimodal xylogenesis in conifers from continental Mediterranean climates. New Phytol 185:471–480. doi:10.1111/j.1469-8137.2009.03073.x

    Article  PubMed  Google Scholar 

  • Čufar K, Prislan P, De Luis M, Gričar J (2008) Tree-ring variation, wood formation and phenology of beech (Fagus sylvatica) from a representative site in Slovenia, SE Central Europe. Trees 22:749–758

    Article  Google Scholar 

  • Čufar K, Luis M, Prislan P, Gričar J, Črepinšek Z, Merela M, Kajfež-Bogataj L (2015) Do variations in leaf phenology affect radial growth variations in Fagus sylvatica? Int J Biometeorol 59:1127–1132. doi:10.1007/s00484-014-0896-3

    Article  PubMed  Google Scholar 

  • De Luis M, Gričar J, Čufar K, Raventós J (2007) Seasonal dynamics of wood formation in Pinus halepensis from dryand semi-arid ecosystems in Spain. IAWA J 28:389–404

    Article  Google Scholar 

  • De Luis M, Novak K, Raventós J, Gričar J, Prislan P, Čufar K (2011) Climate factors promoting intra-annual density fluctuations in Aleppo pine (Pinus halepensis) from semiarid sites. Dendrochronologia 29:163–169

    Article  Google Scholar 

  • Deslauriers A, Rossi S, Anfodillo T, Saracino A (2008) Cambial phenology, wood formation and temperature thresholds in two contrasting years at high altitude in southern Italy. Tree Physiol 28:863–871

    Article  PubMed  Google Scholar 

  • Dittmar C, Elling W (2007) Dendroecological investigation of the vitality of Common Beech (Fagus sylvatica L.) in mixed mountain forests of the Northern Alps (South Bavaria). Dendrochronologia 25:37–56. doi:10.1016/j.dendro.2007.01.003

    Article  Google Scholar 

  • Dulamsuren C, Hauck M, Kopp G, Ruff M, Leuschner C (2016) European beech responds to climate change with growth decline at lower, and growth increase at higher elevations in the center of its distribution range (SW Germany). Trees Struct Funct 1–14 doi:10.1007/s00468-016-1499-x

  • Eckstein D (2004) Change in past environments—secrets of the tree hydrosystem. New Phytol 163:1–4. doi:10.1111/j.1469-8137.2004.01117.x

    Article  Google Scholar 

  • Fischer G, Almanza-Merchán PJ, Ramírez F (2012) Source-sink relationships in fruit species: a review. Revista Colombiana de Ciencias Hortícolas 6:238–253

    Article  Google Scholar 

  • Frankenstein C, Eckstein D, Schmitt U (2005) The onset of cambium activity—a matter of agreement? Dendrochronologia 23:57–62

    Article  Google Scholar 

  • Fritts HC (1976) Tree rings and climate. The Blackburn press, Caldwell

    Google Scholar 

  • García-Suárez AM, Butler CJ, Baillie MGL (2009) Climate signal in tree-ring chronologies in a temperate climate: a multi-species approach. Dendrochronologia 27:183–198. doi:10.1016/j.dendro.2009.05.003

    Article  Google Scholar 

  • Gärtner H, Lucchinetti S, Schweingruber FH (2014) New perspectives for wood anatomical analysis in dendrosciences: the GSL1-microtome. Dendrochronologia 32:47–51. doi:10.1016/j.dendro.2013.07.002

    Article  Google Scholar 

  • Giagli K, Veteška O, Vavrčík H, Gryc V (2015) Monitoring of seasonal dynamics in two age-different European beech stands. Wood Res 60:1005–1016

    Google Scholar 

  • Giagli K, Gričar J, Vavrčík H, Menšík L, Gryc V (2016) The effects of drought on wood formation in Fagus sylvatica during two contrasting years. IAWA J 37:332–348. doi:10.1163/22941932-20160137

    Article  Google Scholar 

  • Gimeno TE, Camarero JJ, Granda E, Pías B, Valladares F (2012) Enhanced growth of Juniperus thurifera under a warmer climate is explained by a positive carbon gain under cold and drought. Tree Physiol 32:326–336. doi:10.1093/treephys/tps011

    Article  CAS  PubMed  Google Scholar 

  • Gričar J (2013) Influence of temperature on cambial activity and cell differentiation in Quercus sessiliflora and Acer pseudoplatanus of different ages. Drvna Industrija 64:95–105

    Article  Google Scholar 

  • Gričar J, Zupančič M, Čufar K, Oven P (2007) Regular cambial activity and xylem and phloem formation in locally heated and cooled stem portions of Norway spruce. Wood Sci Technol 41:463–475

    Article  Google Scholar 

  • Hacket-Pain AJ, Cavin L, Friend AD, Jump AS (2016) Consistent limitation of growth by high temperature and low precipitation from range core to southern edge of European beech indicates widespread vulnerability to changing climate. Eur J Forest Res 135:897–909. doi:10.1007/s10342-016-0982-7

    Article  Google Scholar 

  • Hartl-Meier C, Zang C, Büntgen U, Esper J, Rothe A, Gottlein A, Dirnbock T, Treydte K (2015) Uniform climate sensitivity in tree-ring stable isotopes across species and sites in a mid-latitude temperate forest. Tree Physiol 35:4–15. doi:10.1093/treephys/tpu096

    Article  PubMed  Google Scholar 

  • Hoshino Y, Yonenobu H, Yasue K, Nobori Y, Mitsutani T (2008) On the radial-growth variations of Japanese beech (Fagus crenata) on the northernmost part of Honshu Island, Japan. J Wood Sci 54:183–188

    Article  Google Scholar 

  • Köcher P, Horna V, Leuschner C (2012) Environmental control of daily stem growth patterns in five temperate broad-leaved tree species. Tree Physiol 32:1021–1032. doi:10.1093/treephys/tps049

    Article  PubMed  Google Scholar 

  • Kousari M, Ekhtesasi M, Tazeh M, Saremi Naeini M, Asadi Zarch M (2011) An investigation of the Iranian climatic changes by considering the precipitation, temperature, and relative humidity parameters. Theor Appl Climatol 103:321–335. doi:10.1007/s00704-010-0304-9

    Article  Google Scholar 

  • Kraus C, Zang C, Menzel A (2016) Elevational response in leaf and xylem phenology reveals different prolongation of growing period of common beech and Norway spruce under warming conditions in the Bavarian Alps. Eur J For Res 135:1011–1023. doi:10.1007/s10342-016-0990-7

    Article  Google Scholar 

  • Krepkowski J, Bräuning A, Gebrekirstos A, Strobl S (2011) Cambial growth dynamics and climatic control of different tree life forms in tropical mountain forest in Ethiopia. Trees 25:59–70. doi:10.1007/s00468-010-0460-7

    Article  Google Scholar 

  • Kudo K et al (2014) The effects of localized heating and disbudding on cambial reactivation and formation of earlywood vessels in seedlings of the deciduous ring-porous hardwood, Quercus serrata. Ann Bot 113:1021–1027

    Article  PubMed  PubMed Central  Google Scholar 

  • Latte N, Lebourgeois F, Claessens H (2015) Increased tree-growth synchronization of beech (Fagus sylvatica L.) in response to climate change in northwestern Europe. Dendrochronologia 33:69–77. doi:10.1016/j.dendro.2015.01.002

    Article  Google Scholar 

  • Lenz A, Hoch G, Körner C (2013) Early season temperature controls cambial activity and total tree ring width at the alpine treeline. Plant Ecol Divers 6:365–375

    Article  Google Scholar 

  • Lewis JD, Olszyk D, Tingey DT (1999) Seasonal patterns of photosynthetic light response in Douglas-fir seedlings subjected to elevated atmospheric CO2 and temperature. Tree Physiol 19:243–252. doi:10.1093/treephys/19.4-5.243

    Article  PubMed  Google Scholar 

  • Martinez del Castillo EM, Longares LA, Gričar J, Prislan P, Gil-Pelegrín E, Čufar K, De Luis M (2016) Living on the edge: contrasted wood-formation dynamics in Fagus sylvatica and Pinus sylvestris under Mediterranean conditions. Front Plant Sci 7. doi:10.3389/fpls.2016.00370

  • Michelot A, Simard S, Rathgeber C, Dufrêne E, Damesin C (2012) Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and non-structural carbohydrate dynamics. Tree Physiol 32:1033–1045

    Article  PubMed  Google Scholar 

  • Mudelsee M (2003) Estimating Pearson’s correlation coefficient with bootstrap confidence interval from serially dependent time series. Math Geol 35:651–665. doi:10.1023/b:matg.0000002982.52104.02

    Article  Google Scholar 

  • Oberhuber W, Gruber A (2010) Climatic influences on intra-annual stem radial increment of Pinus sylvestris (L.) exposed to drought. Trees 24:887–898. doi:10.1007/s00468-010-0458-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Oladi R, Pourtahmasi K, Eckstein D, Bräuning A (2011) Seasonal dynamics of wood formation in Oriental beech (Fagus orientalis Lipsky) along an altitudinal gradient in the Hyrcanian forest, Iran. Trees 25:425–433. doi:10.1007/s00468-010-0517-7

    Article  Google Scholar 

  • Oladi R, Bräuning A, Pourtahmasi K (2013) “Plastic” and “static” behavior of vessel-anatomical features in Oriental beech (Fagus orientalis Lipsky) in view of xylem hydraulic conductivity. Trees 28:493–502. doi:10.1007/s00468-013-0966-x

    Article  Google Scholar 

  • Olszyk D, Wise C, VanEss E, Tingey D (1998) Elevated temperature but not elevated CO2 affects long-term patterns of stem diameter and height of Douglas-fir seedlings. Can J For Res 28:1046–1054. doi:10.1139/x98-114

    Article  Google Scholar 

  • Pasho E, Julio Camarero J, Vicente-Serrano S (2012) Climatic impacts and drought control of radial growth and seasonal wood formation in Pinus halepensis. Trees 26:1875–1886. doi:10.1007/s00468-012-0756-x

    Article  Google Scholar 

  • Piovesan G, Biondi F, Bernabei M, Di Filippo A, Schirone B (2005) Spatial and altitudinal bioclimatic zones of the Italian peninsula identified from a beech (Fagus sylvatica L.) tree-ring network. Acta Oecol 27:197–210. doi:10.1016/j.actao.2005.01.001

    Article  Google Scholar 

  • Pourtahmasi K, Lotfiomran N, Bräuning A, Parsapajouh D (2011) Tree-ring width and vessel characteristics of oriental beech (Fagus orientalis) along an altitudinal gradient in the caspian forests, northern Iran. IAWA J 32:461–473

    Google Scholar 

  • Pourtahmasi K, Elzami E, Nasiri S, Oladi R, Bräuning A, Nadi M (2015) Effect of intra-annual changes in rainfall pattern on wood formation of beech and oak in Caspian forests, Iran. Paper presented at the international scientific conference on dendrochronology climate and human history in the Mediterranean Basin Antalya, Turkey, 18–23 October 2015

  • Prislan P, Schmitt U, Koch G, Gričar J, Čufar K (2011) Seasonal ultrastructural changes in the cambial zone of beech (Fagus sylvatica) grown at two different altitudes. IAWA J 32:443–459

    Google Scholar 

  • Prislan P, Gričar J, de Luis M, Smith KT, Čufar K (2013) Phenological variation in xylem and phloem formation in Fagus sylvatica from two contrasting sites. Agric For Meteorol 180:142–151. doi:10.1016/j.agrformet.2013.06.001

    Article  Google Scholar 

  • Rahimzadeh F, Asgari A, Fattahi E (2009) Variability of extreme temperature and precipitation in Iran during recent decades International. J Climatol 29:329–343. doi:10.1002/joc.1739

    Article  Google Scholar 

  • Ren P, Rossi S, Gricar J, Liang E, Cufar K (2015) Is precipitation a trigger for the onset of xylogenesis in Juniperus przewalskii on the north-eastern Tibetan Plateau? Ann Bot 115:629–639. doi:10.1093/aob/mcu259

    Article  PubMed  PubMed Central  Google Scholar 

  • Rossi S, Anfodillo T, Menardi R (2006) Trephor: a new tool for sampling microcores from tree stems. IAWA J 27:89–97

    Article  Google Scholar 

  • Rossi S, Deslauriers A, Anfodillo T, Carraro V (2007) Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia 152:1–12

    Article  PubMed  Google Scholar 

  • Rossi S et al (2008) Critical temperatures for xylogenesis in conifers of cold climates. Global Ecol Biogeogr 17:696–707

    Article  Google Scholar 

  • Sagheb Talebi K, Sajedi T, Pourhashemi M (2014) Forests of Iran: a treasure from the past, a hope for the future plant and vegetation, vol 10. Springer, Dordrecht

    Book  Google Scholar 

  • Sass U, Eckstein D (1995) The variability of vessel size in beech (Fagus sylvatica L.) and its ecophysiological interpretation. Trees 9:247–252. doi:10.1007/BF00202014

    Article  Google Scholar 

  • Schmitt U, Möller R, Eckstein D (2000) Seasonal wood formation dynamics of beech (Fagus sylvatica L.) and black locust (Robinia pseudoacacia L.) as determined by the ‘pinning’ technique. J Appl Bot 74:10–16

    Google Scholar 

  • Semeniuc A, Popa I, Timofte AI, Gurean DM (2014) Xylem Phenology of Fagus sylvatica in Rarău Mountains (Eastern Carpathians, Romania). Notulae Botanicae Horti Agrobotanici Cluj-Napoca 42:5. doi:10.15835/nbha4219546

    Article  Google Scholar 

  • Seo JW, Eckstein D, Jalkanen R, Schmitt U (2011) Climatic control of intra- and inter-annual wood-formation dynamics of Scots pine in northern Finland. Environ Exp Bot 72:422–431

    Article  Google Scholar 

  • Siegmund JF, Sanders TGM, Heinrich I, van der Maaten E, Simard S, Helle G, Donner RV (2016) Meteorological drivers of extremes in daily stem radius variations of beech, oak, and pine in northeastern Germany: an event coincidence analysis. Front Plant Sci 7. doi:10.3389/fpls.2016.00733

  • Skomarkova MV, Vaganov EA, Mund M, Knohl A, Linke P, Boerner A, Schulze ED (2006) Inter-annual and seasonal variability of radial growth, wood density and carbon isotope ratios in tree rings of beech (Fagus sylvatica) growing in Germany and Italy. Trees 20:571–586

    Article  Google Scholar 

  • Stojnic S, Sass-Klaassen U, Orlovic S, Matovic B, Eilmann B (2013) Plastic growth response of european beech provenances to dry site conditions. IAWA J 34:475–484. doi:10.1163/22941932-00000038

    Article  Google Scholar 

  • Tardif J, Flannigan M, Bergeron Y (2001) An analysis of the daily radial activity of 7 boreal tree species, Northwestern Quebec. Environ Monit Assess 67:141–160. doi:10.1023/A:1006430422061

    Article  CAS  PubMed  Google Scholar 

  • Tegel W, Seim A, Hakelberg D, Hoffmann S, Panev M, Westphal T, Büntgen U (2014) A recent growth increase of European beech (Fagus sylvatica L.) at its Mediterranean distribution limit contradicts drought stress. Eur J For Res 133:61–71. doi:10.1007/s10342-013-0737-7

    Article  Google Scholar 

  • Thomas PA (2014) Trees: their natural history, 2nd edn. doi:10.1017/CBO9781139026567

  • Urban J et al (2015) Links between phenology and ecophysiology in a European beech forest. IForest 8:438–447. doi:10.3832/ifor1307-007

    Article  Google Scholar 

  • Vaganov EA, Hughes MK, Kirdyanov AV, Schweingruber FH, Silkin PP (1999) Influence of snowfall and melt timing on tree growth in subarctic Eurasia. Nature 400:149–151

    Article  CAS  Google Scholar 

  • van der Werf GW, Sass-Klaassen UGW, Mohren GMJ (2007) The impact of the 2003 summer drought on the intra-annual growth pattern of beech (Fagus sylvatica L.) and oak (Quercus robur L.) on a dry site in the Netherlands. Dendrochronologia 25:103–112

    Article  Google Scholar 

  • Vieira J, Rossi S, Campelo F, Nabais C (2014) Are neighboring trees in tune? Wood formation in Pinus pinaster. Eur J Forest Res 133:41–50

    Article  Google Scholar 

  • Wilmking M, Juday GP, Barber VA, Zald HSJ (2004) Recent climate warming forces contrasting growth responses of white spruce at treeline in Alaska through temperature thresholds. Global Change Biol 10:1724–1736. doi:10.1111/j.1365-2486.2004.00826.x

    Article  Google Scholar 

  • Woodruff DR, Meinzer FC, Lachenbruch B, Johnson DM (2009) Coordination of leaf structure and gas exchange along a height gradient in a tall conifer. Tree Physiol 29:261–272. doi:10.1093/treephys/tpn024

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Nieminen K, Serra JAA, Helariutta Y (2014) The formation of wood and its control. Curr Opin Plant Biol 17:56–63. doi:10.1016/j.pbi.2013.11.003

    Article  CAS  PubMed  Google Scholar 

  • Zweifel R, Zimmermann L, Zeugin F, Newbery DM (2006) Intra-annual radial growth and water relations of trees: implications towards a growth mechanism. J Exp Bot 57:1445–1459. doi:10.1093/jxb/erj125

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Oladi.

Additional information

Communicated by Rüdiger Grote.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 37 kb)

Supplementary material 2 (JPEG 811 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oladi, R., Elzami, E., Pourtahmasi, K. et al. Weather factors controlling growth of Oriental beech are on the turn over the growing season. Eur J Forest Res 136, 345–356 (2017). https://doi.org/10.1007/s10342-017-1036-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-017-1036-5

Keywords

Navigation