Skip to main content

Advertisement

Log in

Intraspecific variability in frost hardiness of Fagus sylvatica L.

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

This study investigated the intraspecific variability of frost hardiness of Fagus sylvatica. We tested for local adaptation by relating the frost hardiness of different provenances to the climatic conditions at the populations’ origin and searched for genetic markers that coincided with frost hardiness. Twenty provenances of F. sylvatica were selected covering the major part of the climatic gradient within the species’ range. Frost hardiness was assessed in winter and tested in a climate test chamber by exposing buds to different freezing temperatures and estimating LT 50-values by the electrolyte leakage method. Additionally, the genotypes of all investigated provenances were analyzed using amplified fragment length polymorphism (AFLP) fingerprinting. The frost hardiness differed up to 10.3 K between provenances. In contrast to our expectation, we did not find any relationship between LT 50 and climate variables. Although the populations were not well differentiated by AFLP markers, the first PCoA axis of all loci of seven different primers was strongly related to LT 50-values. Linear regressions showed that frost hardiness could be predicted from the presence/absence of 12 loci. The high intraspecific variation in frost hardiness revealed a high potential of this species to different climates. The ability to withstand low temperatures was neither related to the species’ phylogeography, nor to the current climatic conditions of provenances. This points to a more recent evolution of frost hardiness and points to a link of frost hardiness to other characteristics (e.g., drought tolerance), which might have been subjected to other selection pressures than low temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aitken SN, Adams WT (1997) Spring cold hardiness under strong genetic control in Oregon populations of Pseudotsuga menziesii var. menziesii. Can J For Res 27:1773–1780

    Article  Google Scholar 

  • Aldrete A, Mexal JG, Burr KE (2008) Seedling cold hardiness, bud set, and bud break in nine provenances of Pinus greggii Engelm. For Ecol Manag 255:3672–3676

    Article  Google Scholar 

  • Beck E, Heim R, Hansen J (2004) Plant resistance to cold stress: mechanisms and environmental signals triggering frost hardening and dehardening. J Biosci 29:449–459

    Article  PubMed  Google Scholar 

  • Beck E, Fettig S, Knake C, Hartig K, Bhattarai T (2007) Specific and unspecific responses of plants to cold and drought stress. J Biosci 32:501–510

    Article  CAS  PubMed  Google Scholar 

  • Bengt J, Karlsson T (2000) Flora Nordica 1. The Royal Swedish Academy of Sciences, Stockholm

    Google Scholar 

  • Beuker E, Valtonen E, Repo T (1998) Seasonal variation in the frost hardiness of Scots pine and Norway spruce in old provenance experiments in Finland. For Ecol Manag 107:87–98

    Article  Google Scholar 

  • Bilela S, Dounavi A, Fussi B, Konnert M, Holst J, Mayer H, Rennenberg H, Simon J (2012) Natural regeneration of Fagus sylvatica L. adapts with maturation to warmer and drier microclimatic conditions. For Ecol Manag 275:60–67

    Article  Google Scholar 

  • Bolte A, Czajkowski T, Kompa T (2007) The north-eastern distribution range of European beech a review. Forestry 80:413–429

    Article  Google Scholar 

  • Charrier G, Bonhomme M, Lacointe A, Améglio T (2011) Are budburst dates, dormancy and cold acclimation in walnut trees (Juglans regia L.) under mainly genotypic or environmental control? Int J Biometeorol 55:763–774

    Article  PubMed  Google Scholar 

  • Deans JD, Harvey FJ (1996) Frost hardiness of 16 European provenances of sessile oak growing in Scotland. Forestry 69:5–11

    Article  Google Scholar 

  • Dittmar C, Fricke W, Elling W (2006) Impact of late frost events on radial growth of common beech (Fagus sylvatica L.) in Southern Germany. Eur J For Res 125:249–259

    Article  Google Scholar 

  • Dounavi A, Koutsias N, Ziehe M, Hattemer HH (2010) Spatial patterns and genetic structures within beech populations (Fagus sylvatica L.) of forked and non-forked individuals. Eur J For Res 129:1191–1202

    Article  Google Scholar 

  • Dumolin S, Demesure B, Petit RJ (1995) Inheritance of chloroplast and mitochondrial genomes in pedunculate oak investigated with an efficient PCR method. Theor Appl Genet 91:1253–1256

    Article  CAS  PubMed  Google Scholar 

  • Ebeling SK, Welk E, Auge H, Bruelheide H (2008) Predicting the spread of an invasive plant: combining experiments and ecological niche model. Ecography 31:709–719

    Article  Google Scholar 

  • Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fryxell PA (1957) Modes of reproduction of higher plants. Bot Rev 23:135–233

  • Hannah MA, Wiese D, Freund S, Fiehn O, Heyer AG, Hincha DK (2006) Natural genetic variation of freezing tolerance in Arabidopsis. Plant Physiol 142:98–112

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hjelmqvist H (1940) Studien über die Abhängigkeit der Baumgrenzen von der Temperaturverhältnissen unter besonderer Berücksichtigung der Buche und ihrer Klimarassen. Blom, Lund

    Google Scholar 

  • Hofmann M, Buetof A, Welk E, Bruelheide H (2013) Relationship between fundamental and realized niche with respect to frost and drought resistance. Preslia 85:1–17

    Google Scholar 

  • Hosius B, Leinemann L, Bergmann F, Maurer WD, Tabel U (2003) Genetische Untersuchungen zu Familienstrukturen und zur Zwieselbildung in Buchenbeständen. Forst und Holz 58:51–54

    Google Scholar 

  • Hosius B, Leinemann L, Konnernt M, Bergmann F (2006) Genetic aspects of forestry in the Central Europe. Eur J For Res 125:407–417

    Article  Google Scholar 

  • Huntley B, Bartlein PJ, Prentice IC (1989) Climatic control of the distribution and abundance of beech (Fagus L.) in Europe and North America. J Biogeogr 16:551–560

    Article  Google Scholar 

  • Jensen JS, Deans JD (2004) Late autumn frost resistance of twelve North European provenances of Quercus species. Scand J For Res 19:390–399

    Article  Google Scholar 

  • Jump AS, Peñuelas J (2007) Extensive spatial genetic structure revealed by AFLP but not SSR molecular markers in the wind-pollinated tree, Fagus sylvatica. Mol Ecol 16:925–936

    Article  CAS  PubMed  Google Scholar 

  • Jump AS, Hunt JM, Martínez-Izquierdo JA, Peñuelas J (2006) Natural selection and climate change: temperature-linked spatial and temporal trends in gene frequency in Fagus sylvatica. Mol Ecol 15:3469–3480

    Article  CAS  PubMed  Google Scholar 

  • Kathke S, Bruelheide H (2011) Differences in frost hardiness of two Norway spruce morphotypes growing at Mt. Brocken, Germany. Flora 206:120–126

    Article  Google Scholar 

  • Kloss L, Fischer M, Durka W (2011) Land-use effects on genetic structure of a common grassland herb: a matter of scale. Basic Appl Ecol 12:440–448

    Article  Google Scholar 

  • König AO (2005) Provenance research: evaluating the spatial pattern of genetic variation. In: Geburek T, Turok J (eds) Conservation and management of forest genetic resources in Europe. Arbora, Zvolen, pp 275–333

    Google Scholar 

  • Kreyling J, Thiel D, Nagy L, Jentsch A, Huber G, Konnert M, Beierkuhnlein C (2012a) Late frost sensitivity of juvenile Fagus sylvatica L. differs between southern Germany and Bulgaria and depends on preceding air temperature. Eur J For Res 131:717–725

    Article  Google Scholar 

  • Kreyling J, Wiesenberg GLB, Thiel D, Wohlfart C, Huber G, Walter J, Jentsch A, Konnert M, Beierkuhnlein C (2012b) Cold hardiness of Pinus nigra Arnold as influenced by geographic origin, warming, and extreme summer drought. Environ Exp Bot 78:99–108

    Article  Google Scholar 

  • Kriebitzsch WU, Liesebach M, Scholz F (1999) The influence of elevated CO2 on growth parameters of various provenances of European beech (Fagus sylvatica L.) at different irradiance. Forstwiss Cent bl 118:51–65

    Article  CAS  Google Scholar 

  • Lawes GS, Cheong ST, Varela-Alvarez H (1995) The effect of freezing temperatures on buds and stem cuttings of Actinidia species. Sci Hortic 61:1–12

    Article  Google Scholar 

  • Liesebach H (2012a) Genotypisierung mit nuklearen Mikrosatellitenmarkern – Möglichkeiten der Datenauswertung am Beispiel von Buchenpopulationen (Fagus sylvatica L.) aus einem Herkunftsversuch. Appl Agric For Res 62:221–236

    Google Scholar 

  • Liesebach M (2012b) Der Internationale Herkunftsversuch mit Rot-Buche von 1993/95 – Beschreibung der ausgewählten sechs Herkünfte und zwei Versuchsflächen. Appl Agric For Res 62:159–168

    Google Scholar 

  • Magri D, Vendramin GG, Comps B, Dupanloup I, Geburek T, Gomory D, Latalowa M, Litt T, Paule L, Roure JM, Tantau I, van der Knaap WO, Petit RJ, de Beaulieu JL (2006) A new scenario for the Quaternary history of European beech populations: palaeobotanical evidence and genetic consequences. New Phytol 171:199–221

    Article  CAS  PubMed  Google Scholar 

  • Morin X, Améglio T, Ahas R, Kurz-Besson C, Lanta V, Lebourgeois F, Miglietta F, Chuine I (2007) Variation in cold hardiness and carbohydrate concentration from dormancy induction to bud burst among provenances of three European oak species. Tree Physiol 27:817–825

    Article  CAS  PubMed  Google Scholar 

  • Müller-Starck G, Baradat P, Bergmann F (1992) Genetic variation within European tree species. New For 6:23–47

    Article  Google Scholar 

  • Murray MB, Cape JN, Fowler D (1989) Quantification of frost damage in plant tissues by rates of electrolyte leakage. New Phytol 113:307–311

    Article  Google Scholar 

  • Ningre F, Colin F (2007) Frost damage on the terminal shoot as a risk factor of fork incidence on common beech (Fagus sylvatica L.). Ann For Sci 64:8

    Article  Google Scholar 

  • Paludan-Müller G, Saxe H, Leverenz JW (1999) Responses to ozone in 12 provenances of European beech (Fagus sylvatica): genotypic variation and chamber effects on photosynthesis and dry-matter partitioning. New Phytol 144:261–273

    Article  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Pérez F, Hinojosa LF, Ossa CG, Campano F, Orrego F (2014) Decoupled evolution of foliar freezing resistance, temperature niche and morphological leaf traits in Chilean Myrceugenia. J Ecol 102:972–980

    Article  Google Scholar 

  • Repo T, Nilsson JE, Rikala R, Ryyppö A, Sutinen ML (2001) Cold hardiness of Scots Pine (Pinus sylvestris L.). In: Bigras FJ, Colombo SJ (eds) Conifer cold hardiness. Kluwer, Dordrecht, pp 463–493

    Chapter  Google Scholar 

  • Schraml C, Rennenberg H (2002) Ökotypen der Rotbuche (Fagus sylvatica L.) zeigen unterschiedliche Reaktionen auf Trockenstress. Forstwiss Cent bl 121:59–72

    Article  CAS  Google Scholar 

  • Szafer W (1932) The beech and the beech forests in Poland. Veröff Geobot Inst Eidgenöss Tech Hochsch Stift Rübel Zür 8:169–181

    Google Scholar 

  • Turok J (1996) Genetische Untersuchungen bei der Buche - Genetische Anpassungsprozesse und die Erhaltung von Genressourcen in Buchenwäldern (Fagus sylvatica L.), Landesanstalt fuer Oekologie, Bodenordnung und Forsten/Landesamt fuer Agrarordnung NRW

  • Varelides C, Brofas G, Varelides Y (2001) Provenance variation in Pinus nigra at three sites in Northern Greece. Ann For Sci 58:893–900

    Article  Google Scholar 

  • Visnjic D, Dohrenbusch A (2004) Frost resistance and phenology of European beech provenances (Fagus sylvatic L.). Allg Forst Jagdztg 175:101–108

    Google Scholar 

  • von Wühlisch G, Liesebach M, Muhs HJ, Stephan R (1998) A network of international beech provenance trials. In: Turok J, Kremer A, de Vries S (eds) First EUFORGEN meeting on social broadleaves, Bordeaux, France, International Plant Genetic Ressources Institute, Rome, pp 164–172

  • Woodward FI (1987) Climate and plant distribution. Cambridge University Press, New York

    Google Scholar 

Download references

Acknowledgments

We thank F. Berthold for the support at the field work, I. Geier and K. Patsias for the assistance at the laboratory, G. Seidler and E. Welk for the help with compiling the distribution data and maps as well as M. Baudis, D. Eichenberg, and L. Hantsch for useful comments on the manuscript. The manuscript was much improved by comments of two anonymous referees. This study was financially supported by the graduate scholarship of Saxony-Anhalt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Hofmann.

Additional information

Communicated by Rainer Matyssek.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 112 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hofmann, M., Durka, W., Liesebach, M. et al. Intraspecific variability in frost hardiness of Fagus sylvatica L.. Eur J Forest Res 134, 433–441 (2015). https://doi.org/10.1007/s10342-015-0862-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-015-0862-6

Keywords

Navigation