Skip to main content

Advertisement

Log in

Growth reaction patterns of tree height, diameter, and volume of Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) under acute drought stress in Southern Germany

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Climate change in Central Europe may come along with acute drought stress, which can severely reduce growth and vitality of forest trees and whole stands. For a tree species such as Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) which is cultivated far beyond its natural range in Europe, knowledge of its behaviour under stress is crucial for the cultivation of Douglas-fir in view of a changing climate. Because of its easy accessibility, growth response to stress was mainly studied based on diameter growth at breast height. In long-term experiments on one dry and one moist site in Southern Germany, stem analyses of 133 mature and even-aged Douglas-firs were performed. The short-term growth reaction pattern under acute drought stress of 2003 had not only consequences on diameter but more pronounced effects can be observed when studying tree height: Respecting the different age trends by previous detrending, height increment only reacted more sensitive on the dry site. We also showed that extrapolating a particular decline in basal area increment to the whole stem can result in misunderstandings. However, results were less biased, when original data were smoothed or short-term assessment of volume growth was based on basal area measurements. By means of a linear mixed model approach, the influence of site, tree, and stand characteristics on Lloret’s indices of resistance and resilience (Lloret et al. in Oikos 120:1909–1920. doi:10.1111/j.1600-0706.2011.19372.x, 2011) were analysed. For Douglas-fir, site played a crucial role and became more important considering the age trend. On the contrary, the positive influence of site quality on drought tolerance decreased with data processing. However, more growing space by thinning can advance tree resistance and resilience regarding height, diameter, and volume growth. Large individual crown volume improved the growth pattern under drought, and large stand density impaired it. Douglas-fir is obviously equipped with a morphological variability, which fosters lateral rather than vertical growth allocation under severe stress. Silviculture can mitigate stress through the choice of the site and through lower stand densities by thinning. Our refined stress response analysis confirmed a favourable growth and resilience of Douglas-fir even under extreme drought events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albrecht A (2009) Sturmschadenanalysen langfristiger waldwachstumskundlicher Versuchsflächendaten in Baden-Württemberg, 174 p

  • Aussenac G, Granier A (1988) Effects of thinning on water stress and growth in Douglas-fir. Can J For Res 18:100–105. doi:10.1139/x88-015

    Article  Google Scholar 

  • Baayen RH (2008) Analyzing linguistic data: a practical introduction to statistics, 390 p

  • Bates DM, Maechler M (2009) lme4: Linear mixed-effects models using S4 classes. R Packag. version 0.999375-32

  • Bauwe A, Criegee C, Glatzel S, Lennartz B (2011) Model-based analysis of the spatial variability and long-term trends of soil drought at Scots pine stands in northeastern Germany. Eur J For Res 131:1013–1024. doi:10.1007/s10342-011-0573-6

    Article  Google Scholar 

  • Bongarten BC (1978) Genetic and environmental variation in shoot growth and other traits of blue spruce (Picea pungens), 104 p

  • Bouriaud O, Leban J-M, Bert D, Deleuze C (2005) Intra-annual variations in climate influence growth and wood density of Norway spruce. Tree Physiol 25:651–660. doi:10.1093/treephys/25.6.651

    Article  PubMed  CAS  Google Scholar 

  • Bréda N, Granier A, Aussenac G (1995) Effects of thinning on soil and tree water relations, transpiration and growth in an oak forest (Quercus petraea (Matt.) Liebl.). Tree Physiol 15:295–306. doi:10.1093/treephys/15.5.295

    Article  PubMed  Google Scholar 

  • Bréda N, Huc R, Granier A, Dreyer E (2006) Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann For Sci 63:625–644. doi:10.1051/forest:2006042

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multi-model inference: a practical information-theoretic approach, 2nd edn, 488 p

  • Carnwath GC, Peterson DW, Nelson CR (2012) Effect of crown class and habitat type on climate–growth relationships of ponderosa pine and Douglas-fir. For Ecol Manag 285:44–52. doi:10.1016/j.foreco.2012.07.037

    Article  Google Scholar 

  • Chen P-Y, Welsh C, Hamann A (2010) Geographic variation in growth response of Douglas-fir to interannual climate variability and projected climate change. Glob Change Biol 16:3374–3385. doi:10.1111/j.1365-2486.2010.02166.x

    Article  Google Scholar 

  • De Martonne E (1926) Une nouvelle fonction climatologique: L’indice d’aridité. La Meteorol, pp 449–458

  • Dobbertin M (2005) Tree growth as indicator of tree vitality and of tree reaction to environmental stress: a review. Eur J For Res 124:319–333. doi:10.1007/s10342-005-0085-3

    Article  Google Scholar 

  • Donner BL, Running SW (1986) Water stress response after thinning Pinus contorta stands in Montana. For Sci 32:614–625

    Google Scholar 

  • Eilmann B, Rigling A (2012) Tree-growth analyses to estimate tree species’ drought tolerance. Tree Physiol 32:178–187. doi:10.1093/treephys/tps004

    Article  PubMed  Google Scholar 

  • Eilmann B, de Vries SMG, den Ouden J et al (2013) Origin matters! Difference in drought tolerance and productivity of coastal Douglas-fir (Pseudotsuga menziesii (Mirb.)) provenances. For Ecol Manag 302:133–143. doi:10.1016/j.foreco.2013.03.031

    Article  Google Scholar 

  • Elling W (1993) Immissionen im Ursachenkomplex von Tannenschädigung und Tannensterben. Allg Forstzeitschrift 48:87–95

    Google Scholar 

  • Feliksik E, Wilczyński S (2004) Dendroclimatological regions of Douglas fir (Pseudotsuga menziesii Franco) in western Poland. Eur J For Res 123:39–43. doi:10.1007/s10342-004-0017-7

    Article  Google Scholar 

  • Feliksik E, Wilczyński S (2007) Dendroclimatic regions of Douglas fir Pseudotsuga menziesii (Mirb.) Franco in western and northern Poland. Dendrobiology 52:9–15

    Google Scholar 

  • Griesbauer HP, Green DS (2010) Regional and ecological patterns in interior Douglas-fir climate: growth relationships in British Columbia, Canada. Can J For Res 40:308–321. doi:10.1139/X09-197

    Article  Google Scholar 

  • Grieu P, Guehl JM, Aussenac G (1988) The effects of soil and atmospheric drought on photosynthesis and stomatal control of gas exchange in three coniferous species. Physiol Plant 73:97–104. doi:10.1111/j.1399-3054.1988.tb09199.x

    Article  Google Scholar 

  • Hartmann H (2011) Will a 385 million year-struggle for light become a struggle for water and for carbon? How trees may cope with more frequent climate change-type drought events. Glob Change Biol 17:642–655. doi:10.1111/j.1365-2486.2010.02248.x

    Article  Google Scholar 

  • Hasenauer H, Monserud RA (1997) Biased predictions for tree height increment models developed from smoothed “data”. Ecol Model 98:13–22. doi:10.1016/S0304-3800(96)01933-3

    Article  Google Scholar 

  • Hein S, Mäkinen H, Yue C, Kohnle U (2007) Modelling branch characteristics of Norway spruce from wide spacings in Germany. For Ecol Manag 242:155–164. doi:10.1016/j.foreco.2007.01.014

    Article  Google Scholar 

  • Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree Ring Bull 43:69–78

    Google Scholar 

  • Kantavichai R, Briggs D, Turnblom E (2010) Modeling effects of soil, climate, and silviculture on growth ring specific gravity of Douglas-fir on a drought-prone site in Western Washington. For Ecol Manag 259:1085–1092. doi:10.1016/j.foreco.2009.12.017

    Article  Google Scholar 

  • Klädtke J, Kohnle U, Kublin E et al (2012) Wachstum und Wertleistung der Douglasie in Abhängigkeit von der Standraumgestaltung. Schweizerische Zeitschrift für Forstwes 163:96–104. doi:10.3188/szf.2012.0096

    Article  Google Scholar 

  • Kohler M, Sohn J, Nägele G, Bauhus J (2010) Can drought tolerance of Norway spruce (Picea abies (L.) Karst.) be increased through thinning? Eur J For Res 129:1109–1118. doi:10.1007/s10342-010-0397-9

    Article  Google Scholar 

  • Kraft G (1884) Beiträge zur Lehre von den Durchforstungen, Schlagstellungen und Lichtungshieben. Schlagstellungen und Lichthieben, Hann 147

    Google Scholar 

  • Kramer H (1986) Beziehungen zwischen Kronenschadbild und Volumenzuwachs bei erkrankten Fichten. Allg Forst- und Jagdzeitung 157:22–27

    Google Scholar 

  • Lassoie JP, Salo DJ (1981) Physiological response of large Douglas-fir to natural and induced soil water deficits. Can J For Res 11:139–144. doi:10.1139/x81-019

    Article  Google Scholar 

  • Laurent M, Antoine N, Joël G (2003) Effects of different thinning intensities on drought response in Norway spruce (Picea abies (L.) Karst.). For Ecol Manag 183:47–60. doi:10.1016/S0378-1127(03)00098-7

    Article  Google Scholar 

  • Lloret F, Keeling EG, Sala A (2011) Components of tree resilience: effects of successive low-growth episodes in old ponderosa pine forests. Oikos 120:1909–1920. doi:10.1111/j.1600-0706.2011.19372.x

    Article  Google Scholar 

  • Mäkinen H (1998) The suitability of height and radial increment variation in Pinus sylvestris (L.) for expressing environmental signals. For Ecol Manag 112:191–197. doi:10.1016/S0378-1127(98)00337-5

    Article  Google Scholar 

  • Martín-Benito D, Del Río M, Heinrich I et al (2010) Response of climate-growth relationships and water use efficiency to thinning in a Pinus nigra afforestation. For Ecol Manag 259:967–975. doi:10.1016/j.foreco.2009.12.001

    Article  Google Scholar 

  • Martinez-Meier A, Sanchez L, Pastorino M et al (2008) What is hot in tree rings? The wood density of surviving Douglas-firs to the 2003 drought and heat wave. For Ecol Manag 256:837–843. doi:10.1016/j.foreco.2008.05.041

    Article  Google Scholar 

  • Martínez-Vilalta J, López BC, Loepfe L, Lloret F (2012) Stand- and tree-level determinants of the drought response of Scots pine radial growth. Oecologia 168:877–888. doi:10.1007/s00442-011-2132-8

    Article  PubMed  Google Scholar 

  • McCarthy MC, Enquist BJ (2007) Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation. Funct Ecol 21:713–720. doi:10.1111/j.1365-2435.2007.01276.x

    Article  Google Scholar 

  • McDowell NG, Sevanto S (2010) The mechanisms of carbon starvation: how, when, or does it even occur at all? New Phytol 186:264–266. doi:10.1111/j.1469-8137.2010.03232.x

    Article  PubMed  Google Scholar 

  • Newton M, Preest DS (1988) Growth and water relations of Douglas fir (Pseudotsuga menziesii) seedlings under different weed control regimes. Weed Sci 36:653–662

    Google Scholar 

  • Oliver CD, Larson B (1996) Forest stand dynamics, 467 p

  • Olszyk DM, Wise C, VanEss E, Tingey D (1998) Elevated temperature but not elevated CO2 affects long-term patterns of stem diameter and height of Douglas-fir seedlings. Can J For Res 28:1046–1054. doi:10.1139/x98-114

    Article  Google Scholar 

  • Pichler P, Oberhuber W (2007) Radial growth response of coniferous forest trees in an inner Alpine environment to heat-wave in 2003. For Ecol Manag 242:688–699. doi:10.1016/j.foreco.2007.02.007

    Article  Google Scholar 

  • Pinheiro J, Bates D (2000) Mixed-effects models in S and S-PLUS, 528 p

  • Pinol J, Sala A (2000) Ecological implications of xylem cavitation for several Pinaceae in the Pacific Northern USA. Funct Ecol 14:538–545. doi:10.1046/j.1365-2435.2000.t01-1-00451.x

    Article  Google Scholar 

  • Pollanschütz J (1975) Zuwachsuntersuchungen als Hilfsmittel der Diagnose und Beweissicherung bei Forstschäden durch Luftverunreinigung. Allg Forstzeitung 86:187–192

    Google Scholar 

  • Pretzsch H (2010) Forest dynamics, growth and yield. 664. doi:10.1007/978-3-540-88307-4

  • Pretzsch H, Biber P (2010) Size-symmetric versus size-asymmetric competition and growth partitioning among trees in forest stands along an ecological gradient in central Europe. Can J For Res 40:370–384. doi:10.1139/X09-195

    Article  Google Scholar 

  • Pretzsch H, Dieler J, Matyssek R, Wipfler P (2010) Tree and stand growth of mature Norway spruce and European beech under long-term ozone fumigation. Environ Pollut 158:1061–1070. doi:10.1016/j.envpol.2009.07.035

    Article  PubMed  CAS  Google Scholar 

  • Pretzsch H, Dieler J (2011) The dependency of the size-growth relationship of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica [L.]) in forest stands on long-term site conditions, drought events, and ozone stress. Trees 25(3):355–369. doi:10.1007/s00468-010-0510-1

  • Pretzsch H, Schütze G, Uhl E (2013) Resistance of European tree species to drought stress in mixed versus pure forests: evidence of stress release by inter-specific facilitation. Plant Biol (Stuttg) 15:483–495. doi:10.1111/j.1438-8677.2012.00670.x

    Article  CAS  Google Scholar 

  • Rais A, Poschenrieder W, Pretzsch H, Kuilen J-WG (2014) Influence of initial plant density on sawn timber properties for Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco). Ann For Sci. doi:10.1007/s13595-014-0362-8

  • R Development Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Reineke LH (1933) Perfecting a stand-density index for even-aged forests. J Agric Res 46:627–638

    Google Scholar 

  • Riemer T (1994) Über die Varianz von Jahrringbreiten. Berichte des Forschungszentrums Waldökosysteme der Univ Göttingen A121:375

    Google Scholar 

  • Roth BE, Newton M (1996) Role of lammas growth in recovery of Douglas-fir seedlings from deer browsing, as influenced by weed control, fertilization, and seed source. Can J For Res 26:936–944. doi:10.1139/x26-103

    Article  Google Scholar 

  • Rubner K (1910) Das Hungern des Cambiums und das Aussetzen der Jahrringe. Naturwissenschaftliche Zeitschrift Forst- und Landwirtschaft 8:212–262

    Google Scholar 

  • Schär C, Vidale PL, Lüthi D et al (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427:332–336. doi:10.1038/nature02300

    Article  PubMed  Google Scholar 

  • Schlittgen R, Streitberg BHJ (1997) Zeitreihenanalyse, 7th edn, p 574

  • Schmidt M, Hanewinkel M, Kändler G et al (2010) An inventory-based approach for modeling single-tree storm damage: experiences with the winter storm of 1999 in southwestern Germany. Can J For Res 40:1636–1652. doi:10.1139/X10-099

    Article  Google Scholar 

  • Sergent A-S, Rozenberg P, Bréda N (2012) Douglas-fir is vulnerable to exceptional and recurrent drought episodes and recovers less well on less fertile sites. Ann For Sci. doi:10.1007/s13595-012-0220-5

    Google Scholar 

  • Sharp RE (2002) Interaction with ethylene: changing views on the role of abscisic acid in root and shoot growth responses to water stress. Plant Cell Environ 25:211–222. doi:10.1046/j.1365-3040.2002.00798.x

    Article  PubMed  CAS  Google Scholar 

  • Sohn JA, Kohler M, Gessler A, Bauhus J (2012) Interactions of thinning and stem height on the drought response of radial stem growth and isotopic composition of Norway spruce (Picea abies). Tree Physiol 32:1199–1213. doi:10.1093/treephys/tps077

    Article  PubMed  Google Scholar 

  • Spiecker H (2010) Opportunities and risks for Douglas fir in a changing climate - Abstracts. Berichte Freiburger Forstliche Forschung 85:65 p

  • Sterba H (1981) Radial increment along the bole of trees: problems of measurement and interpretation. Dickenwachstum der Bäume—radial growth trees—la croissance des arbres en diamètre. IUFRO proceedings: physiological aspects of forest ecology Mitteilungen der Forstlichen Bundesversuchsanstalt Wien, Wien, pp 67–74

  • Sterba H (1996) Forest decline and growth trends in central Europe. In: Spiecker H, Mielikäinen K, Köhl M, Skovsgaard JP (eds) European forest institute, research report 5. Springer, Heidelberg, pp 149–165

    Google Scholar 

  • Taeger S, Zang C, Liesebach M et al (2013) Impact of climate and drought events on the growth of Scots pine (Pinus sylvestris L.) provenances. For Ecol Manag 307:30–42. doi:10.1016/j.foreco.2013.06.053

    Article  Google Scholar 

  • Uhl E, Ammer C, Spellmann H, et al (2013) Zuwachstrend und Stressresilienz von Tanne und Fichte im Vergleich. Allg. Forst- und Jagdzeitung 184(11–12):278–292

  • Walter H, Lieth H (1967) Climate diagram world atlas. VEB Gustav Fischer Verlag Jena, Jena

    Google Scholar 

  • Wang Y, Čufar K, Eckstein D, Liang E (2012) Variation of maximum tree height and annual shoot growth of Smith fir at various elevations in the Sygera Mountains, southeastern Tibetan Plateau. PLoS One 7:e31725. doi:10.1371/journal.pone.0031725

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Waring RH, Schlesinger WH (1985) Forest ecosystems: concepts and management. Academic Press, Waltham, p 340

    Google Scholar 

  • Zang C, Pretzsch H, Rothe A (2012) Size-dependent responses to summer drought in Scots pine, Norway spruce and common oak. Trees 26:557–569. doi:10.1007/s00468-011-0617-z

    Article  Google Scholar 

  • Zhang Q-B, Hebda RJ (2004) Variation in radial growth patterns of Pseudotsuga menziesii on the central coast of British Columbia, Canada. Can J For Res 34:1946–1954. doi:10.1139/x04-078

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Walker N, et al (2009) Mixed effects models and extensions in ecology with R. doi:10.1007/978-0-387-87458-6

  • Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14. doi:10.1111/j.2041-210X.2009.00001.x

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Bavarian State Ministry for Nutrition, Agriculture, and Forestry for funding the project X36 entitled “Relationship between spacing and wood quality of Douglas-fir in Bavaria”. We also thank Ulricke Nickles, Fabian Dawo, Johanna Lintl, Gerhard Schütze, Thomas Zimmerer, Ralf Polzer, and the students of the Fachoberschule Triesdorf, Forstwirtschaft for their strong support during collecting the data. Thanks are also due to Ulrich Kern for the graphical artwork and the anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Rais.

Additional information

Communicated by Miren del Rio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rais, A., van de Kuilen, JW.G. & Pretzsch, H. Growth reaction patterns of tree height, diameter, and volume of Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) under acute drought stress in Southern Germany. Eur J Forest Res 133, 1043–1056 (2014). https://doi.org/10.1007/s10342-014-0821-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-014-0821-7

Keywords

Navigation