Skip to main content
Log in

Integrating mycorrhiza in a complex model system: effects on ecosystem C and N fluxes

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

During the last decades, ectomycorrhiza has been identified to be of major importance for ecosystem carbon (C) and nitrogen (N) cycling and tree growth. Despite this importance, mycorrhiza has largely been neglected in ecosystem models or regarded only implicitly by a static mycorrhiza term. In order to overcome this limitation, we integrated the dynamic mycorrhiza model MYCOFON (Meyer et al. in Plant Soil 327:493–517, 2010a, Plant Soil 327:519, 2010b) into the ecosystem modelling framework MoBiLE (Modular Biosphere simuLation Environment) and coupled it to available forest growth and development process models. Model testing was done for different beech and spruce forest sites in Germany. Simulation results were compared to a standard model set-up, that is, without explicit consideration of mycorrhiza. Parameters were set in order not to violate previous findings about C partitioning into aboveground and belowground biomasses. Nevertheless, the explicit consideration of mycorrhiza let to considerable differences between sites and deposition scenarios with respect to simulated root biomass, plant nitrogen supply, and gaseous soil C and N emissions. The latter was mainly a result of differences in soil N concentration and dynamics. Our simulation results also show that the C supply to mycorrhizal fungi by plants as well as the importance of mycorrhizal fungi for plant N uptake, that is, the allocation of C and N between plants and fungi, depends on the magnitude of N deposition. This effect is neglected by standard model approaches so far. Therefore, explicit consideration of mycorrhiza in ecosystem models has a high potential to improve model simulations of ecosystem C and N cycling and associated biosphere–hydrosphere–atmosphere exchange processes and consequently simulation of soil CO2 and N trace gas emissions from forest sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aber JD, Magill A, Boone R, Melillo J, Steudler P (1993) Plant and soil responses to chronic nitrogen additions at the Harvard forest, Massachusetts. Ecol Appl 3(1):156–166

    Google Scholar 

  • Aber J, McDowell W, Nadelhoffer K, Magill A, Berntson G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I (1998) Nitrogen saturation in temperate forest ecosystems—Hypotheses revisited. BioScience 48:921–934

    Google Scholar 

  • Aber JD, Neilson RP, Mcnulty S, Lenihan JM, Bachelet D, Drapek RJ (2001) Forest processes and global environmental change: predicting effects of individual and multiple stressors. Bioscience 51:735–751

    Google Scholar 

  • Ames RN, Reid CPP, Porter LK, Cambardella C (1983) Hyphal uptake and transport of nitrogen from two 15N labelled sources by Glomus mosseae, a vesicular-arbuscular mycorrhizal fungus. New Phytol 116:381–396

    Google Scholar 

  • Bååth E, Wallander H (2003) Soil and rhizosphere microorganisms have the same Q(10) for respiration in a model system. Glob Chang Biol 9(12):1788–1791

    Google Scholar 

  • Ball JT, Woodrow IE, Berry JA, Biggins J (1987) A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggins J (ed) Progress in photosynthesis research, 4th edn. Martinus-Nijhoff Publishers, Dordrecht, pp 221–224

    Google Scholar 

  • Bolte A, Villanueva I (2006) Interspecific competition impacts on the morphology and distribution of fine roots in European beech and Norway spruce. Eur J For Res 125:15–26

    Google Scholar 

  • Borken W, Kossmann G, Matzner E (2007) Biomass, morphology and nutrient contents of fine roots in four Norway spruce stands. Plant Soil 292:79–93

    CAS  Google Scholar 

  • Correa A, Strasser RJ, Martins-Loucao A (2008) Response of plants to ectomycorrhizae in N-limited conditions: which factor determine its variation? Mycorrhiza 18:413–427

    PubMed  CAS  Google Scholar 

  • Correa A, Hampp R, Magel E, Martins-Loucao M (2011) Carbon allocation in ectomycorrhizal plants at limited and optimal N supply: an attempt at unraveling conflicting theories. Mycorrhiza 21(1):35–51

    PubMed  CAS  Google Scholar 

  • Courty P, Buee M, Diedhiou A, Frey-Klett P, Le Tacon F, Rineau F, Turpault M, Uroz S, Garbaye J (2010) The role of ectomycorrhizal communities in forest ecosystem processes: new perspectives and emerging concepts. Soil Biol Biochem 42(5):679–698

    CAS  Google Scholar 

  • Dannenmann M, Simon J, Gasche R, Holst J, Naumann PS, Kögel-Knabner I, Knicker H, Mayer H, Schloter M, Pena R, Polle A, Rennenberg H, Papen H (2009) Tree girdling provides insight on the role of labile carbon in nitrogen partitioning between soil microorganisms and adult European beech. Soil Biol Biochem 41(8):1622–1631

    CAS  Google Scholar 

  • Davies FT, Svenson SE, Cole JC, Phavaphutanon L, Duray SA, Olalde-Portugal V, Meier CE, Bo SH (1996) Non-nutritional stress acclimation of mycorrhizal woody plants exposed to drought. Tree Physiol 16:985–993

    Google Scholar 

  • De Bruijn AMG, Butterbach-Bahl K, Blagodatsky S, Grote R (2009) Model evaluation of different mechanisms driving freeze-thaw N2O emissions. Agric Ecosyst Environ 133:196–207

    Google Scholar 

  • Deckmyn G, Campioli M, Muys B, Kraigher H (2011) Simulating C cycles in forest soils: Including the active role of micro-organisms in the ANAFORE forest model. Ecol Model 222(12):1972–1985

    CAS  Google Scholar 

  • Di Pietro M, Churin JL, Garbaye J (2007) Differential ability of ectomycorrhizas to survive drying. Mycorrhiza 17(6):547–550

    PubMed  Google Scholar 

  • Dohrenbusch A, Grote R, Fritz HW (1993) Struktur und Wachstum eines Fichtenbestandes unter experimenteller Manipulation der Stoffeinträge. Forstarchiv 64(4):172–177

    Google Scholar 

  • Dufrene E, Davi H, Francois C, Le Maire G, Le Dantec V, Granier A (2005) Modelling carbon and water cycles in a beech forest part I: model description and uncertainty analysis on modelled NEE. Ecol Model 185:407–436

    CAS  Google Scholar 

  • Ek H (1997) The influence of nitrogen fertilisation on the carbon economy of Paxillus involutus in ectomycorrhizal association with Betula pendula. New Phytol 135:133–142

    CAS  Google Scholar 

  • Farquhar GD, Von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149(1):78–90

    CAS  Google Scholar 

  • Finer L, Helmisaari HS, Lohmus K, Majdi H, Brunner I, Borja I, Eldhuset T, Godbold D, Grebenc T, Konopka B, Kraigher H, Mottonen MR, Ohashi M, Oleksyn J, Ostonen I, Uri V, Vanguelova E (2007) Variation in fine root biomass of three European tree species: beech (Fagus sylvatica L.) Norway spruce (Picea abies L. Karst.) and Scots pine (Pinus sylvestris L.). P. Plant Biosyst 141(3):394–405

    Google Scholar 

  • Finlay RD (2008) Ecological aspects of mycorrhizal symbiosis: with special emphasis on the function diversity of interactions involving the extraradical mycelium. J Exp Bot 59:1115–1126

    PubMed  CAS  Google Scholar 

  • Fransson PMA, Taylor AFS, Finlay RD (2000) Effects of continuous optimal fertilization on belowground ectomycorrhizal community structure in a Norway spruce forest. Tree Phys 20:599–606

    Google Scholar 

  • Gessler A, Schneider S, von Sengbusch D, Weber P, Hanemann U, Huber C, Rothe A, Kreutzer K, Rennenberg H (1998) Field and laboratory experiments on net uptake of nitrate and ammonium by the roots of spruce (Picea abies) and beech (Fagus sylvatica) trees. New Phytol 138:275–285

    CAS  Google Scholar 

  • Gessler A, Jung K, Gasche R, Papen H, Heidenfelder A, Börner E, Metzler B, Augustin S, Hildebrand E, Rennenberg H (2005) Climate and forest management influence nitrogen balance of European beech forests: microbial N transformations and inorganic net uptake capacity of mycorrhizal roots. Eur J Forest Res 124:95–111

    CAS  Google Scholar 

  • Göransson H, Wallander H, Ingerslev M, Rosengreen U (2006) Estimating the relative nutrient uptake from different soil depths in Quercus robur, Fagus sylvatica and Picea abies. Plant Soil 286:87–98

    Google Scholar 

  • Gower ST, McMurtrie RE, Murty D (1996) Aboveground net primary production decline with stand age: potential causes. Tree 11:378–382

    PubMed  CAS  Google Scholar 

  • Grote R (1998) Integrating dynamic morphological properties into forest growth modeling. II Allocation and mortality. For Ecol Manag 111:193–210

    Google Scholar 

  • Grote R (2003) Estimation of crown radii and crown projection area from stem size and tree position. Ann For Sci 60(5):393–402

    Google Scholar 

  • Grote R (2007) Sensitivity of volatile monoterpene emissions to changes in canopy structure. New Phytol 173:550–561

    PubMed  CAS  Google Scholar 

  • Grote R, Mayrhofer S, Fischbach RJ, Steinbrecher R, Staudt M, Schnitzler JP (2006) Process-based modelling of isoprenoid emissions from evergreen leaves of Quercus ilex. Atmos Environ 40:152–154

    Google Scholar 

  • Grote R, Lavoir AV, Rambal S, Staudt M, Zimmer I, Schnitzler JP (2009a) Modeling the drought impact on monoterpene fluxes from an evergreen mediterranean forest canopy. Oecologica 160:213–223

    Google Scholar 

  • Grote R, Lehmann E, Brümmer C, Brüggemann N, Szarzynski J, Kunstmann H (2009b) Modelling and observation of biosphere–atmosphere interactions in natural savannah in Burkina Faso. Phys Chem Earth 34:251–260

    Google Scholar 

  • Grote R, Keenan T, Lavoir AV, Staudt M (2010) Process-based simulation of seasonality and drought stress in monoterpene emission models. Biogeosciences 7(1):257–274

    CAS  Google Scholar 

  • Grote R, Kiese R, Grünwald T, Ourcival J-M, Granier A (2011) Modelling forest carbon balances considering tree mortality and removal. Agric For Meteorol 151:179–190

    Google Scholar 

  • Heinemeyer A, Ineson P, Ostle N, Fitter A (2006) Respiration of the external mycelium in the arbuscular mycorrhizal symbiosis shows strong dependence on recent photosynthates and acclimation to temperature. Glob Chang Biol 171:159–170

    CAS  Google Scholar 

  • Heinemeyer A, Hartley I, Evans S, Carreira de la fuentes J, Ineson P (2007) Forest soil CO2 flux: uncovering the contribution and environmental responses of ectomycorrhizas. New Phytol 13:1786–1797

    Google Scholar 

  • Heinonsalo J, Pumpanen J, Rasilo T, Hurme K, Ilvesniemi H (2010) Carbon partitioning in ectomycorrhizal Scots pine seedlings. Soil Biol Biochem 42(9):1614–1623

    CAS  Google Scholar 

  • Hobbie EA (2006) Carbon allocation to ectomycorrhizal fungi correlates with belowground allocation in culture studies. Ecology 87:563–569

    PubMed  Google Scholar 

  • Hobbie EA, Colpaert JV (2003) Nitrogen availability and colonization by mycorrhizal fungi correlate with nitrogen isotope patterns in plants. New Phytol 157(1):115–126

    CAS  Google Scholar 

  • Hobbie EA, Hobbie JE (2008) Natural abundance of 15N in nitrogen-limited forests and tundra can estimate nitrogen cycling through mycorrhiza fungi: a review. Ecosystems 11:815–830

    CAS  Google Scholar 

  • Hobbie E, Colpaert J, White M, Quimette A, Macko S (2008) Nitrogen form availability and mycorrhizal colonization affect biomass and nitrogen isotope patterns. Plant Soil 310:121–136

    CAS  Google Scholar 

  • Hobbie JE, Hobbie EA (2006) 15N in symbiotic fungi and plants estimates nitrogen and carbon flux rates in arctic tundra. Ecology 87(4):816–822

    Google Scholar 

  • Högberg M, Högberg P (2002) Extramatrical ectomycorrhizal mycelium contributes one-third of microbial biomass and produces together with associated roots half the dissolved organic carbon in a forest soil. New Phytol 154(3):791–795

    Google Scholar 

  • Högberg P, Högböm L, Schinkel H (1998) Nitrogen-related root variables of trees along an N-deposition gradient in Europe. Tree Physiol 18:823–828

    PubMed  Google Scholar 

  • Högberg M, Baath E, Nordgren A, Arnebrandt K, Högberg P (2003) Contrasting effects of nitrogen availability on plant carbon supply to mycorrhizal fungi and saprotrophs—a hypothesis based on field observations in boreal forest. New Phytol 160:225–238

    Google Scholar 

  • Högberg M, Briones M, Keel S, Metcalfe D, Campbell C, Midwood A, Thornton B, Hurry V, Linder S, Näsholm T, Högberg P (2010) Quantification of effects of season and nitrogen supply on tree below-ground carbon transfer to ectomycorrhizal fungi and other soil organisms in a boreal pine forest. New Phytol 187(2):485–493

    PubMed  Google Scholar 

  • Högberg P, Johannisson C, Yarwood S, Callesen I, Naäholm T, Myrold D, Högberg M (2011) Recovery of ectomycorrhiza after nitrogen saturation of a conifer forest. New Phytol 189(2):515–525

    PubMed  Google Scholar 

  • Holst J, Grote R, Offermann C, Ferrio JP, Gessler A, Mayer H, Rennenberg H (2009) Water fluxes within beech stands in complex terrain. Int J Biometeorol 54:23–36

    PubMed  Google Scholar 

  • Hughes JK, Hodge A, Fitter AH, Atkin OK (2008) Mycorrhizal respiration: implications for global scaling relationships. Trends Plant Sci 13(11):583–588

    PubMed  CAS  Google Scholar 

  • Hyvönen R, Agren G, Linder S, Persson T, Cotrufo M, Ekbland A, Freeman M, Grelle A, Janssens I, Jarvis P, Kellomäki S, Lindroth A, Loustau D, Lundmark T, Norby R, Oren R, Pilegaard K, Ryan M, Sigurdsson B, Strömgren M, van Oijen M, Wallin G (2007) The likely impact of elevated [CO2], nitrogen deposition, increased temperature, and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review. New Phytol 173:463–480

    PubMed  Google Scholar 

  • Jacobsen C, Rademacher P, Meesenburg H, Meiwes KJ (2003) Gehalte chemischer Elemente in Baumkompartimenten—Literaturstudie und Datensammlung. Berichte des Forschungszentrum Waldökosysteme, Georg-August-Universität Göttingen

  • Janssens IA, Luyssaert S (2009) Nitrogen’s carbon bonus. Nat Geosci 2:318–319

    CAS  Google Scholar 

  • Jolicoeur M, Bouchard-Marchand E, BéCard G, Perrier M (2002) Regulation of mycorrhizal symbiosis: development of a structured nutritional dual model. Ecol Model 158:121–142

    CAS  Google Scholar 

  • Kirschbaum MUF, Paul KI (2002) Modelling C and N dynamics in forest soils with a modified version of the CENTURY model. Soil Biol Biochem 34(3):341–354

    CAS  Google Scholar 

  • Kohzu A, Tateishi T, Yamada A, Koba K, Wada E (2000) Nitrogen isotope fractionation during nitrogen transport from ectomycorrhizal fungi, Suillus granulatus, to the host plant, Pinus densiflora. Soil Sci Plant Nutr 46(3):733–739

    Google Scholar 

  • Kramer K, Leinonen I, Bartelink HH, Berbigier B, Borghetti M, Bernhofer C, Cienciala E, Dolman AJ, Froer O, Gracia CA, Ranier A, Gruenwald T, Hari P, Jans W, Kellomäki S, Loustau D, Magnagni F, Markkanen T, Matteucci G, Mohren GMJ, Moors E, Nissinen A, Peltola H, Sabat S, Sanchez A, Sontag M, Valentini R, Vesala T (2002) Evaluation of six process-based forest growth models using eddy-covariance measurements of CO2 and H2O fluxes at six forest sites in Europe. Glob Chang Biol 8:213–230

    Google Scholar 

  • Kranabetter JM, MacKenzie WH (2010) Contrasts among mycorrhizal plant guilds in foliar nitrogen concentration and foliar δ15N along productivity gradients of a boreal forest. Ecosystems 13:108–117

    CAS  Google Scholar 

  • Kreutzer K, Göttlein A (1991) Ökosystemforschung Höglwald. Verlag Paul Parey, Hamburg

    Google Scholar 

  • Kreutzer K, Weiss T (1998) The Höglwald field experiments—aims, concept and basic data. Plant Soil 199:1–10

    CAS  Google Scholar 

  • Lambers H, Mougel C, Jaillard B, Hinsinger P (2009) Plant–microbe–soil interactions in the rhizosphere: an evolutionary perspective. Plant Soil 321(1–2):83–115

    CAS  Google Scholar 

  • Landsberg J (2003) Physiology in forest models: history and the future. FBMIS 1:49–63

    Google Scholar 

  • Lang C, Polle A (2011) Ectomycorrhizal fungal diversity, tree diversity and root nutrient relations in a mixed Central European forest. Tree Physiol 31(5):531–538

    PubMed  Google Scholar 

  • Langley JA, Chapman SK, Hungate BA (2006) Ectomycorrhizal colonization slows roots decomposition: the post portem fungal legacy. Ecol Lett 9:955–959

    PubMed  Google Scholar 

  • Lehning A, Zimmer W, Zimmer I, Schnitzler J (2001) Modeling of annual variations of oak (Quercus robur L.) isoprene synthase activity to predict isoprene emission rates. J Geophys Res 106(D3):3157–3166

    CAS  Google Scholar 

  • Leuschner Ch, Hertel D, Schmid I, Koch O, Muhs A, Hölscher D (2004) Stand fine root biomass and fine root morphology in old-growth beech forests as a function of precipitation and soil fertility. Plant Soil 258:43–56

    CAS  Google Scholar 

  • Leuschner Ch, Voß S, Foetzki A, Clases Y (2006) Variation in leaf area index and stand leaf mass of European beech across gradients of soil acidity and precipitation. Plant Ecol 182:247–258

    Google Scholar 

  • Li CS (2000) Modeling trace gas emissions from agricultural ecosystems. Nutr Cycl Agroecosyst 58:259–276

  • Li C, Frolking S, Frolking TA (1992) A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and Sensitivity. J Geophys Res 97:9759–9776

    Google Scholar 

  • Lilleskov EA, Parrent JL (2007) Can we develop general predictive models of mycorrhizal fungal community–environment relationships? New Phytol 174:250–256

    PubMed  CAS  Google Scholar 

  • Magill A, Aber J, Currie W, Nadelhoffer K, Martin M, McDowell W, Melillo J, Steudler P (2004) Ecosystem response to 15 years of chronic nitrogen additions at the Harvard Forest LTER, Massachuset, USA. For Ecol Manag 196:7–28

    Google Scholar 

  • Mainiero R, Kazda M, Schmid I (2010) Fine root dynamics in 60-year-old stands of Fagus sylvatica and Picea abies growing on haplic luvisol soil. Eur J For Res 129(6):1001–1009

    Google Scholar 

  • Majdi H, Andersson P (2005) Fine root production and turnover in a Norway spruce stand in northern Sweden: effects of nitrogen and water manipulation. Ecosystems 8(2):191–199

    CAS  Google Scholar 

  • Mäkelä A (2003) Process-based modelling of tree and stand growth: towards a hierarchical treatment of multiscale processes. Can J For Res 33:398–409

    Google Scholar 

  • Marschner H, Dell B (1994) Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159:89–102

    CAS  Google Scholar 

  • McFarlane KJ, Yanai RD (2006) Measuring nitrogen and phosphorus uptake by intact roots of mature Acer saccharum (Marsh) Pinus resinosa Ait. and Picea abies (L) Karst. Plant Soil 279:163–172

  • Meyer J, Schneider BU, Werk K, Oren R, Schulze E-D (1988) Performance of two Picea abies (L.) Karst. stands at different stages of decline. V. Root tip and ectomycorrhiza development and their relations to above ground and soil nutrients. Oecologia 77:7–13

    Google Scholar 

  • Meyer A, Grote R, Polle A, Butterbach-Bahl K (2010a) Simulating mycorrhiza contribution to forest C- and N-cycling—the MYCOFON model. Plant Soil 327:493–517

    CAS  Google Scholar 

  • Meyer A, Grote R, Polle A, Butterbach-Bahl K (2010b) Erratum to: Simulating mycorrhiza contribution to forest C- and N-cycling—the MYCOFON model. Plant Soil 327:519

    CAS  Google Scholar 

  • Moyano F, Kutsch W, Rebmann C (2008) Soil respiration fluxes in relation to photosynthetic activity in broad-leaf and needle-leaf forest stands. Agric For Meteorol 148:135–143

    Google Scholar 

  • Mund M (1996) Wachstum und oberirdische Biomasse von Fichtenbeständen (Picea abies (L.) Karst.) in einer Periode anthropogener Stickstoffeinträge. Dissertation, University Bayreuth

  • Nahm M, Matzarakis A, Rennenberg H, Geßler A (2007) Seasonal courses of key parameters of nitrogen, carbon and water balance in European beech (Fagus sylvatica L.) grown on four different study sites along a European North-South climate gradient during the 2003 drought. Trees 21:79–92

    CAS  Google Scholar 

  • Nehls U (2008) Mastering ectomycorrhizal symbiosis: the impact of carbohydrates. J Exp Bot 59(5):1097–1108

    PubMed  CAS  Google Scholar 

  • Nehls U, Gohringer F, Wittulsky S, Dietz S (2010) Fungal carbohydrate support in the ectomycorrhizal symbiosis: a review. Plant Biol 12(2):292–301

    PubMed  CAS  Google Scholar 

  • Nilsson L, Wallander H (2003) Production of external mycelium by ectomycorrhizal fungi in a Norway spruce forest was reduced in response to nitrogen fertilization. New Phytol 158:409–416

    Google Scholar 

  • Nilsson L, Bååth E, Falkengren-Grerup U, Wallander H (2007) Growth of ectomycorrhizal mycelia and composition of soil microbial communities in oak forest soils along a nitrogen deposition gradient. Oecologica 153(2):375–384

    Google Scholar 

  • Orwin K, Kirschbaum M, St John M, Dickie I (2011) Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model-based assessment. Ecol Lett. doi:10.1111/j.1461-0248.2011.01611.x

    PubMed  Google Scholar 

  • Ostonen I, Lohmus K, Pajuste K (2005) Fine root biomass, production and its proportion of NPP in a fertile middle-aged Norway spruce forest: comparison of soil core and ingrowth core methods. For Ecol Manag 212(1–3):264–277

    Google Scholar 

  • Plassard C, Schroemm P, Mouisan D, Salsac L (1991) Assimilation of mineral nitrogen and ion balance in the two partners of ectomycorrhizal symbiosis: data and hypothesis. Experimentia 47:340–349

    CAS  Google Scholar 

  • Rothe A (1997) Einfluss des Baumartenanteils auf Durchwurzelung, Wasserhaushalt und Zuwachsleistung eines Fichten-Buchen-Mischbestandes am Standort Höglwald. Forst. Forschungsberichte 163, Schriftenreihe der Forstwissenschaftlichen Fakultät der Universität München und der Bayerischen Landesanstalt für Wald und Forstwirtschaft

  • Ryan MG, Binkley D, Fownes JD (1997) Age-related decline in forest productivity: pattern and process. Adv Ecol Res 27:214–261

    Google Scholar 

  • Ryan MG, Philipps N, Bond BJ (2006) The hydraulic limitation hypothesis revisited. Plant, Cell Environ 29:367–381

    Google Scholar 

  • Sariyildiz T, Anderson JM (2005) Variation in the chemical composition of green leaves and leaf litters from three deciduous tree species growing on different soil types. For Ecol Manag 210(1–3):303–319

    Google Scholar 

  • Schnepf A, Roose T, Schweiger P (2008) Growth model for arbuscular mycorrhizal fungi. J R Soc Interface 5:773–784

    PubMed  CAS  Google Scholar 

  • Shi LB, Guttenberger M, Kottke I, Hampp R (2002) The effect of drought on mycorrhizas of beech (Fagus sylvatica L.): changes in community structure, and the content of carbohydrates and nitrogen storage bodies of the fungi. Mycorrhiza 12(6):303–311

    PubMed  CAS  Google Scholar 

  • Smith S, Read D (2008) Mycorrhizal symbiosis. Academic Press, London

    Google Scholar 

  • Staddon PL, Ramsey CB, Ostle N, Ineson P, Fitter AH (2003) Rapid turnover of hyphae of mycorrhizal fungi determined by AMS microanalysis of C-14. Science 300(5622):1138–1140

    PubMed  CAS  Google Scholar 

  • Stange F, Butterbach-Bahl K, Papen H, Zechmeister-Boltenstern S, Li CS, Aber JD (2000) A process-oriented model of N2O and NO emissions from forest soils 2. Sensitivity analysis and validation. J Geophys Res 105(D4):4385–4398

    CAS  Google Scholar 

  • Taylor AF, Alexander I (2005) The ectomycorrhizal symbiosis: life in the real world. Mycologist 19:102–112

    Google Scholar 

  • Thornley JHM, Cannell MGR (2000) Modelling the components of plant respiration: representation and realism. Ann Bot Lond 85:55–67

    CAS  Google Scholar 

  • Treseder KK (2004) A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol 164(2):347–355

    Google Scholar 

  • Treseder KK, Allen MF (2002) Direct nitrogen and phosphorus limitation of arbuscular mycorrhizal fungi: a model and field test. New Phytol 155(3):507–515

    Google Scholar 

  • Treseder KK, Turner KM, Mack MC (2007) Mycorrhizal responses to nitrogen fertilization in boreal ecosystems: potential consequences for soil carbon storage. Glob Chang Biol 13(1):78–88

    Google Scholar 

  • van Der Heijden MGA, Horton TR (2009) Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. J Ecol 97:1139–1150

    Google Scholar 

  • van der Heijden MAG, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11(3):296–310

    PubMed  Google Scholar 

  • Van Hees AFM, Clerkx APPM (2003) Shading and root–shoot relations in saplings of silver birch, pedunculate oak and beech. For Ecol Manag 176(1–3):439–448

    Google Scholar 

  • Verbeeck H, Samson R, Granier A, Montpied P, Lemeur R (2008) Multi-year model analysis of GPP in a temperate beech forest in France. Ecol Model 210:85–103

    Google Scholar 

  • Von Droste zu Hülshoff B (1969) Struktur und Biomasse eines Fichtenbestandes auf Grund einer Dimensionsanalyse an oberirdischen Baumorganen. Dissertation, Ludwig-Maximilian-Universität München

  • Wallenda T, Kottke I (1998) Nitrogen deposition and ectomycorrhizas. New Phytol 139:169–187

    CAS  Google Scholar 

  • Wallenda T, Stober C, Högböm L, Schinkel H, George E, Högberg P, Read D (2000) Nitrogen uptake processes in roots and mycorrhizas. In: Schulze ED (ed) Carbon and nitrogen cylcing in European forest ecosystems. Springer, Heidelberg, pp 122–143

  • Wallander H (1995) A new hypothesis to explain allocation of dry matter between mycorrhizal fungi and pine seedlings in relation to nutrient supply. Plant Soil 168–169:243–248

    Google Scholar 

  • Wallander H, Nilsson LO, Hagerberg D, Rosengren U (2003) Direct estimates of C:N ratios of ectomycorrhizal mycelia collected from Norway spruce forest soils. Soil Biol Biochem 35:997–999

    Google Scholar 

  • Wallander H, Ekblad A, Bergh J (2011) Growth and carbon sequestration by ectomycorrhizal fungi in intensively fertilized Norway spruce forests. Forest Ecol Manag 262:999–1007

    Google Scholar 

  • Wang Q, Tenhunen J, Falge E, Bernhofer C, Granier A, Vesala T (2003) Simulation and scaling of temporal variation in gross primary production for coniferous and deciduous temperate forests. Glob Chang Biol 10:37–51

    Google Scholar 

  • Weis W, Gruber A, Huber C, Göttlein A (2009) Element concentrations and storage in the aboveground biomass of limed and unlimed spruce trees at Höglwald. Eur J Forest Res 128:437–445

    Google Scholar 

  • Withington JM, Reich PB, Oleksyn J, Eissenstat DM (2006) Comparison of structure and life span in roots and leaves among temperate trees. Ecol Monogr 76(3):381–397

    Google Scholar 

Download references

Acknowledgments

This work was funded by the Deutsche Forschungsgemeinschaft (DFG) within the Beech Research Group (FOR 788) and the EU-funded integrated project NitroEurope.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Butterbach-Bahl.

Additional information

Communicated by R. Matyssek.

Appendix

Appendix

See Fig. 9.

Fig. 9
figure 9

Shape of different response functions: a the function fsupply describes the sensitivity of fungal C allocation to soil N availability (kg N m−2) (Eq. 4). The nitrogen content (soil N) is calculated by summing up the plant- and fungi-relevant mineral nitrogen forms (ammonium, nitrate, nitrite, ammonia) across the rooted soil profile NLIM = threshold N content (0.0026 kg N m−2). b The function fallo describes the sensitivity of fungal C allocation to fungal N supply to the root (Eq. 4). c The response function fMyc and 1 − fMyc control fungal N supply to the root and fungal N uptake, respectively (Eqs. 810)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, A., Grote, R. & Butterbach-Bahl, K. Integrating mycorrhiza in a complex model system: effects on ecosystem C and N fluxes. Eur J Forest Res 131, 1809–1831 (2012). https://doi.org/10.1007/s10342-012-0634-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-012-0634-5

Keywords

Navigation