Skip to main content

Mycorrhizae and Global Change

  • Chapter
  • First Online:
Trees in a Changing Environment

Part of the book series: Plant Ecophysiology ((KLEC,volume 9))

Abstract

Mycorrhizal symbioses are essential components of terrestrial ecosystems. These symbioses are intimate associations between plants and fungi where the plant fixes C, exchanging it for nutrients and water from fungal hyphae that permeate and explore surrounding soil. Perturbations, whether acute (such as disturbance or cutting) or chronic (global change, N deposition) alter mycorrhizal functioning and thereby forest dynamics. Among these dynamics are C sequestration and alleviating nutrient stresses to optimize C:nutrient ratios. We explore three areas whereby global change might alter mycorrhizae, which in turn, will affect forest dynamics. First, increasing temperatures associated with elevated atmospheric CO2 will increase soil temperature, thereby potentially increasing respiration. However, that may depend upon lags and the variation inherent in diel and seasonal variation. Second, the increased temperature will increase soil drying, and subsequently reduce the length of the growing season for mycorrhizal fungal hyphae. However, elevated CO2 will simultaneously increase water-use efficiency, thereby increasing the length of the growing season. Third, mycorrhizae increase activity and nutrient uptake with elevated CO2, negating some of the C:nutrient stress. This activity is dictated by both changing amounts of mycorrhizal hyphal growth and by shifting mycorrhizal fungal taxa, altering the strategies whereby nutrients are acquired and C allocated. This includes spatial (breadth and depth) as well as enzymatic shifts. Finally, we examine the longer-term implications of how global change can alter plant communities and plant dynamics on both ecological and evolutionary time scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams MA, Bell TL, Pate JS (2002) Phosphorus sources and availability modify growth and distribution of root clusters and nodules of native Australian legumes. Plant Cell Environ 25:837–850

    Article  CAS  Google Scholar 

  • Alberton O, Kuyper TW, Gorissen A (2007) Competition for nitrogen between Pinus sylvestris and ectomycorrhizal fungi generates potential for negative feedback under elevated CO2. Plant Soil 296:159–172

    Article  CAS  Google Scholar 

  • Allen MF (1991) The ecology of mycorrhizae. Cambridge University Press, New York

    Google Scholar 

  • Allen MF (1996) The ecology of arbuscular mycorrhizae: a look back into the 20th century and a peek into the 21st. Mycol Res 100:769–782

    Article  Google Scholar 

  • Allen MF (2001) Modeling arbuscular mycorrhizal infection: is % infection an appropriate variable? Mycorrhiza 10:255–258

    Article  Google Scholar 

  • Allen EB (2004) Restoration of artemisia shrublands invaded by exotic annual Bromus: a comparison between Southern California and the Intermountain Region. USDA Forest Service proceedings RMRS-P-31

    Google Scholar 

  • Allen MF (2006) Water dynamics of mycorrhizas in arid soils. In: Gadd GM (ed) Fungi in biogeochemical cycles. Cambridge University Press, New York

    Google Scholar 

  • Allen MF (2007) Mycorrhizal fungi: highways for water and nutrients in arid soils. Vadose Zone J 6:291–297

    Article  Google Scholar 

  • Allen MF, Allen EB (1990) Carbon source of VA mycorrhizal fungi associated with Chenopodiaceae from a semi-arid steppe. Ecology 71:2019–2021

    Article  Google Scholar 

  • Allen MF, MacMahon JA (1985) Impact of disturbance on cold desert fungi: comparative microscale dispersion patterns. Pedobiologia 28:215–224

    Google Scholar 

  • Allen MF, Morris SJ, Edwards F, Allen EB (1995) Microbe-plant interactions in Mediterranean-type habitats: shifts in fungal symbiotic and saprophytic functioning in response to global change. In: Moreno JM, Oechel WC (eds) Global change and Mediterranean-type ecosystems, vol 117, Ecological studies. Springer, New York

    Chapter  Google Scholar 

  • Allen MF, Figueroa C, Weinbaum BS, Barlow SB, Allen EB (1996) Differential production of oxalates by mycorrhizal fungi in arid ecosystems. Biol Fertil Soils 22:287–292

    Article  CAS  Google Scholar 

  • Allen MF, Lansing J, Allen EB (2002) The role of mycorrhizal fungi in composition and dynamics of plant communities: a scaling issue. Prog Bot 63:344–367

    Article  Google Scholar 

  • Allen MF, Swenson W, Querejeta JI, Egerton-Warburton LM, Treseder KK (2003) Ecology of mycorrhizae: a conceptual framework for complex interactions among plants and fungi. Ann Rev Phytopathol 41:271–303

    Article  CAS  Google Scholar 

  • Allen MF, Egerton-Warburton L, Treseder K, Cario C, Lindahl A, Lansing J, Querejeta I, Karen O, Harney S, Zink T (2005a) Biodiversity and mycorrhizal fungi in southern California. In: Kus B, Beyers JL (eds) Planning for biodiversity: bringing research and management together: proceedings of a symposium for the South Coast Ecoregion, March 2000, Pomona. USDA Forest Service Pacific Southwest Research Station general technical report PSW-GTR-195:43–56

    Google Scholar 

  • Allen MF, Klironomos JN, Treseder KK, Oechel WC (2005b) Responses of soil biota to elevated CO2 in a chaparral ecosystem. Ecol Appl 15:1701–1711

    Article  Google Scholar 

  • Allen MF, Vargas R, Graham E, Swenson W, Hamilton M, Taggart M, Harmon TC, Ratko A, Rundel P, Fulkerson B, Estrin D (2007) Soil sensor technology: life within a pixel. Bioscience 57:859–867

    Article  Google Scholar 

  • Allen MF, Allen EB, Lansing JL, Pregitzer KS, Hendrick RL, Ruess RW, Collins SL (2010) Responses to chronic N fertilization of ectomycorrhizal pinon but not arbuscular mycorrhizal juniper in a pinon-juniper woodland. J Arid Environ 74:1170–1176

    Article  Google Scholar 

  • Arbaugh MJ, Johnson DW, Pulliam WM (1998) Simulated effects of N deposition, ozone injury, and climate change on a forest stand in the San Bernardino Mountains. In: Miller PR, McBride JR (eds) Oxidant air pollution impacts in the montane forests of Southern California: a case study of the San Bernardino Mountains. Springer, New York

    Google Scholar 

  • Arnolds E (1991) Decline of ectomycorrhizal fungi in Europe. Agric Ecosyst Environ 35:209–244

    Article  Google Scholar 

  • Bornyasz MA, Graham R, Allen MF (2005) Ectomycorrhizae in a soil-weathered granitic bedrock regolith: linking matrix resources to plants. Geoderma 126:141–160

    Article  Google Scholar 

  • Cario CH (2005) Elevated atmospheric carbon dioxide and chronic atmospheric nitrogen deposition change nitrogen dynamics associated with two Mediterranean climate evergreen oaks. Dissertation, University of California, Davis

    Google Scholar 

  • Clark NM, Rillig MC, Nowaka RS (2009) Arbuscular mycorrhizal fungal abundance in the Mojave Desert: seasonal dynamics and impacts of elevated CO2. J Arid Environ 73:834–843

    Article  Google Scholar 

  • Corkidi L, Evans M, Bohn J (2008) An introduction to propagation of arbuscular mycorrhizal fungi in pot cultures for inoculation of native plant nursery stock. Native Plants J 9:29–38

    Article  Google Scholar 

  • Egerton-Warburton LM, Allen EB (2000) Shifts in arbuscular mycorrhizal communities along an anthropogenic nitrogen deposition gradient. Ecol Appl 10:484–496

    Article  Google Scholar 

  • Egerton-Warburton LM, Allen MF (2001) Endo- and ectomycorrhizae in Quercus agrifolia Nee. (Fagaceae): patterns of root colonization and effects on seedling growth. Mycorrhiza 11:283–290

    Article  CAS  PubMed  Google Scholar 

  • Egerton-Warburton LM, Graham RC, Allen EB, Allen MF (2001) Reconstruction of historical changes in mycorrhizal fungal communities under anthropogenic nitrogen deposition. Proc Roy Soc Lond B Biol Sci 1484:2479–2848

    Article  Google Scholar 

  • Egerton-Warburton LM, Graham RC, Hubbert KR (2003) Spatial variability in mycorrhizal hyphae and nutrient and water availability in a soil-weathered bedrock profile. Plant Soil 249:331–342

    Article  CAS  Google Scholar 

  • Egerton-Warburton LM, Johnson NC, Allen EB (2007) Mycorrhizal community dynamics following nitrogen fertilization: a cross-site test in five grasslands. Ecol Monogr 77:527–544

    Article  Google Scholar 

  • Fenn ME, Bytnerowicz A (1993) Dry deposition of nitrogen and sulfur to ponderosa and Jeffrey pine in the San Bernardino National Forest in southern California. Environ Pollut 81:277–285

    Article  CAS  PubMed  Google Scholar 

  • Hasselquist NJ, Vargas R, Allen MF (2010) Using soil sensing technology to examine interactions and controls between ectomycorrhizal growth and environmental factors on soil CO2 dynamics. Plant Soil 331:17–29

    Article  CAS  Google Scholar 

  • Hayhoe K, Cayan D, Field CB, Frumhoff PC, Maurer EP, Miller NL, Moser SC, Schneider SH, Cahill KN, Cleland EE, Dale L, Drapek R, Hanemann RM, Kalkstein LS, Lenihan J, Lunch CK, Neilson RP, Sheridan SC, Verville JH (2004) Emissions pathways, climate change, and impacts on California. Proc Natl Acad Sci 101:12422–12427

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heinemeyer A, Hartley IP, Evans SP, Carreira De La Fuente JA, Ineson P (2007) Forest soil CO2 flux: uncovering the contribution and environmental responses of ectomycorrhizas. Glob Chang Biol 13:1786–1797

    Article  Google Scholar 

  • Hobbie EA, Agerer R (2010) Nitrogen isotopes in ectomycorrhizal sporocarps correspond to belowground exploration types. Plant Soil 327:71–83

    Article  CAS  Google Scholar 

  • Hobbie JE, Hobbie EA (2006) 15N in symbiotic fungi and plants estimates nitrogen and carbon flux rates in Arctic tundra. Ecology 87:816–822

    Article  PubMed  Google Scholar 

  • Hoeksema JD, Kummel M (2003) Ecological persistence of the plant‐mycorrhizal mutualism: a hypothesis from species coexistence theory. Am Nat 162:S40–S50

    Article  PubMed  Google Scholar 

  • Hoeksema JD, Chaudhary VB, Gehring CA, Johnson NC, Karst J, Koide RT, Pringle A, Zabinski C, Bever JD, Moore JC, Wilson GWT, Klironomos JN, Umbanhowar J (2010) A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol Lett 13:394–407

    Article  PubMed  Google Scholar 

  • Johnson NC, Rowland DL, Corkidi L, Allen EB (2008) Characteristics of plant winners and losers during grassland eutrophication – importance of biomass allocation and mycorrhizal function. Ecology 89:2868–2878

    Article  PubMed  Google Scholar 

  • Jurinak JJ, Dudley LM, Allen MF, Knight WG (1986) The role of calcium oxalate in the availability of phosphorus in soils of semiarid regions: a thermodynamic study. Soil Sci 142:255–261

    Article  CAS  Google Scholar 

  • Karen O, Hogberg N, Dahlberg A, Jonsson L, Nylund JE (1997) Inter- and intraspecific variation in the ITS region of rDNA of ectomycorrhizal fungi in Fennoscandia as detected by endonuclease analysis. New Phytol 136:313–325

    Article  CAS  Google Scholar 

  • Kitajima K, Anderson KE, Allen MF (2010) Effect of soil temperature and soil water content on fine root turnover rate in a California mixed conifer ecosystem. J Geophys Res 115:G04032

    Google Scholar 

  • Klironomos JN, Rillig MC, Allen MF (1996) Below-ground microbial and microfaunal responses to Artemisia tridentata grown under elevated atmospheric CO2. Funct Ecol 10:527–534

    Article  Google Scholar 

  • Klironomos JN, Rillig MC, Allen MF, Zak DR, Kubiske M, Pregitzer KS (1997) Soil fungal-arthropod responses to Populus tremuloides grown under enriched atmospheric CO2 under field conditions. Glob Chang Biol 3:473–478

    Article  Google Scholar 

  • Klironomos JN, Rillig MC, Allen MF (1999) Designing belowground field experiments with the help of semi-variance and power analyses. Appl Soil Ecol 12:227–238

    Article  Google Scholar 

  • Klironomos JN, Allen MF, Rillig MC, Piotrowski J, Makvandi-Nejad S, Wolfe BE, Powell JR (2005) Abrupt rise in atmospheric CO2 overestimates community response in a model plant-soil system. Nature 433:621–624

    Article  CAS  PubMed  Google Scholar 

  • Lansing J (2003) Comparing arbuscular and ectomycorrhizal fungal communities in seven North American Forests and their response to nitrogen fertilization. Dissertation, University of California/San Diego State University, Davis/San Diego

    Google Scholar 

  • Lilleskov EA, Fahey TJ, Lovett GM (2001) Ectomycorrhizal fungal aboveground community change over an atmospheric nitrogen deposition gradient. Ecol Appl 11:397–410

    Article  Google Scholar 

  • Nilsson RH, Tederso L, Lindahl BD, Rasmus Kjøller R, Carlsen T, Quince C, Abarenkov K, Pennanen T, Stenlid J, Bruns T, Larsson K-H, Kõljalg U, Kauserud H (2011) Towards standardization of the description and publication of next-generation sequencing datasets of fungal communities. New Phytol 177:790–801

    Google Scholar 

  • Parent JL, Morris WF, Vilgalys R (2006) CO2 enrichment and nutrient availability alter ectomycorrhizal fungal communities. Ecology 87:2278–2287

    Article  Google Scholar 

  • Pate JS, Verboom WH, Galloway PD (2001) Turner review no. 4 co-occurrence of Proteaceae, laterite and related oligotrophic soils: coincidental associations or causative inter-relationships? Aust J Bot 49:529–560

    Article  CAS  Google Scholar 

  • Pritchard SG (2011) Soil organisms and global climate change. Plant Pathol 60:82–99

    Article  Google Scholar 

  • Pritchard SG, Strand AE, McCormack ML, Davis MA, Finzi AC, Jackson RB, Matamala R, Rogers HH, Oren R (2008) Fine root dynamics in a loblolly pine forest are influenced by free-air-CO2-enrichment: a six-year-minirhizotron study. Glob Chang Biol 14:588–602

    Article  Google Scholar 

  • Querejeta JI, Egerton-Warburton L, Allen MF (2003) Direct nocturnal water transfer from oaks to their mycorrhizal symbionts during severe soil drying. Oecologia 134:55–64

    Article  PubMed  Google Scholar 

  • Querejeta JI, Egerton-Warburton LM, Allen MF (2007) Hydraulic lift may buffer rhizosphere hyphae against the negative effects of severe soil drying in a California oak savanna. Soil Biol Biochem 39:409–417

    Article  CAS  Google Scholar 

  • Querejeta JI, Egerton-Warburton LM, Allen MF (2009) Topographic position modulates the mycorrhizal response of oak trees to inter-annual rainfall variability in a California woodland. Ecology 90:649–662

    Article  PubMed  Google Scholar 

  • Rillig MC, Allen MF, Klironomos JN, Chiariello NR, Field CB (1998a) Plant-species specific changes in root-inhabiting fungi in a California annual grassland: responses to elevated CO2 and nutrients. Oecologia 113:252–259

    Article  Google Scholar 

  • Rillig MC, Allen MF, Klironomos JN, Field CB (1998b) Arbuscular mycorrhizal percent root infection and infection intensity of Bromus hordeaceus grown in elevated atmospheric CO2. Mycologia 90:199–205

    Article  Google Scholar 

  • Rillig MC, Field CB, Allen MF (1999) Fungal root colonization responses in natural grasslands after long-term exposure to elevated atmospheric CO2. Glob Chang Biol 5:577–585

    Article  Google Scholar 

  • Salo LF (2004) Population dynamics of red brome (Bromus madritensis subsp. rubens): times for concern, opportunities for management. J Arid Environ 57:291–296

    Article  Google Scholar 

  • Schuessler A, Kluge M (2001) Geosiphon pyriforme, an endocytosymbiosis between fungus and cyanobacteria, and its meaning as a model system for AM research. In: Hock B (ed) The mycota, vol IX, Fungal associations. Springer, Berlin

    Google Scholar 

  • Sirajuddin AT (2009) Impact of atmospheric nitrogen pollution on belowground mycorrhizal fungal community structure and composition in the San Bernardino Mountains. Dissertation, University of California, Riverside

    Google Scholar 

  • Smith SD, Huxman TE, Zitzer SF, Charlet TN, Housman DC, Coleman JS, Fenstermaker LK, Seemann JR, Nowak RS (2000) Elevated CO2 increases productivity and invasive species success in an arid ecosystem. Nature 408:79–82

    Article  CAS  PubMed  Google Scholar 

  • Staddon PL, Thompson K, Jakobsen I, Grime JP, Askew AP, Fitter AH (2003a) Mycorrhizal fungal abundance is affected by long-term climatic manipulations in the field. Glob Chang Biol 9:186–194

    Article  Google Scholar 

  • Staddon PL, Ramsey CB, Ostle N, Ineson P, Fitter AH (2003b) Rapid turnover of hyphae of mycorrhizal fungi determined by AMS microanalysis of C-14. Science 300:1138–1140

    Article  CAS  PubMed  Google Scholar 

  • Tang J, Misson L, Gershenson A, Cheng W, Goldstein AH (2005) Continuous measurements of soil respiration with and without roots in a ponderosa pine plantation in the Sierra Nevada Mountains. Agr Forest Meteorol 132:212–227

    Article  Google Scholar 

  • Thomey ML, Collins SL, Vargas R, Johnson JE, Brown RF, Natvig DO, Friggens MT (2011) Effect of precipitation variability on net primary production and soil respiration in a Chihuahuan Desert grassland. Glob Chang Biol 17:1505–1515

    Article  Google Scholar 

  • Treseder KK, Allen MF (2000) Mycorrhizal fungi have a potential role in soil carbon storage under elevated CO2 and nitrogen deposition. New Phytol 147:189–200

    Article  CAS  Google Scholar 

  • Treseder KK, Allen MF (2002) Direct N and P limitation of arbuscular mycorrhizal fungi: a model and field test. New Phytol 155:507–515

    Article  Google Scholar 

  • Treseder KK, Egerton-Warburton LM, Allen MF, Cheng Y, Oechel WC (2003) Alteration of soil carbon pools and communities of mycorrhizal fungi in chaparral exposed to elevated CO2. Ecosystems 6:786–796

    Article  CAS  Google Scholar 

  • Treseder KK, Masiello CA, Lansing JL, Allen MF (2004) Species-specific measurements of ectomycorrhizal turnover under N-fertilization: combining isotopic and genetic approaches. Oecologia 138:419–425

    Article  PubMed  Google Scholar 

  • Treseder KK, Allen MF, Ruess RW, Pregitzer KS, Hendrick RL (2005a) Lifespans of fungal rhizomorphs under nitrogen fertilization in a pinyon-juniper woodland. Plant Soil 270:249–255

    Article  CAS  Google Scholar 

  • Treseder KK, Morris SJ, Allen MF (2005b) The contribution of root exudates, symbionts, and detritus to carbon sequestration in the soil. In: Wright F, Zobel R (eds) Roots and soil management– interactions between roots and soil, Agronomy monograph no 48. American Agronomy Society, Madison

    Google Scholar 

  • Van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  Google Scholar 

  • Vargas R, Allen MF (2008) Dynamics of fine root, fungal rhizomorphs and soil respiration in a mixed temperate forest: integrating sensors and observations. Vadose Zone J 7:1055–1064

    Article  Google Scholar 

  • Vargas R, Baldocchi DD, Allen MF, Bahn M, Black TA, Collins SL, Yuste JC, Hirano T, Jassal RS, Pumpanen J, Tang J (2010) Looking deeper into the soil: biophysical controls and seasonal lags of soil CO2 production and efflux. Ecol Appl 20:1569–1582

    Article  PubMed  Google Scholar 

  • Wolfe J, Johnson NC, Rowland DL, Reich PB (2003) Elevated CO2 and plant species richness impact arbuscular mycorrhizal fungal spore communities. New Phytol 157:579–588

    Article  Google Scholar 

Download references

Acknowledgments

We thank Tim Mok and Renee Wong for tracing hyphae and Leela Rao for helping us to run DayCent model. This research was funded by the National Science Foundation (EF‐0410408 and CRR‐0120778).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael F. Allen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Allen, M.F., Kitajima, K., Hernandez, R.R. (2014). Mycorrhizae and Global Change. In: Tausz, M., Grulke, N. (eds) Trees in a Changing Environment. Plant Ecophysiology, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9100-7_3

Download citation

Publish with us

Policies and ethics