Skip to main content
Log in

Current knowledge of interactions between Drosophila suzukii and microbes, and their potential utility for pest management

  • Review
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

Insects exhibit complex symbiotic interactions with microorganisms, which provide an opportunity for developing novel pest management strategies. Closely related to Drosophila melanogaster, which is commonly used as a model to explore insect–microbe interactions, Drosophila suzukii is an important invasive insect pest of fruit crops in the Americas and Europe. We provide an overview of Drosophila–microbe interactions and review current research with D. suzukii. Recent studies revealed yeast and bacterial species associated with D. suzukii flies, fly guts and infested fruit. The ecological importance of these insect–microbe interactions is under investigation. Microbes have a strong impact on insect physiology and D. suzukii responds both positively and aversively to microbial volatiles. We highlight potential pest management strategies that take advantage of D. suzukii–microbe ecology, including improved monitoring as well as management using behavioural manipulation, phagostimulants and biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abraham J, Zhang A, Angeli S, Abubeker S, Michel C, Feng Y, Rodriguez-Saona C (2015) Behavioral and antennal responses of Drosophila suzukii (Diptera: Drosophilidae) to volatiles from fruit extracts. Environ Entomol 44:356–367

    Article  PubMed  Google Scholar 

  • Ai M, Blais S, Park J-Y, Min S, Neubert TA, Suh GSB (2013) Ionotropic glutamate receptors IR64a and IR8a form a functional odorant receptor complex in vivo in Drosophila. J Neurosci 33:10741–10749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anagnostou C, Dorsch M, Rohlfs M (2010) Influence of dietary yeasts on Drosophila melanogaster life-history traits. Entomol Exp Appl 136:1–11

    Article  Google Scholar 

  • Andreadis SS, Witzgall P, Becher PG (2015) Survey of arthropod assemblages responding to live yeasts in an organic apple orchard. Front Ecol Evol 3:121

    Article  Google Scholar 

  • Arguello JR, Sellanes C, Lou YR, Raguso RA (2013) Can yeast (S. cerevisiae) metabolic volatiles provide polymorphic signaling? PLoS One 8:e70219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asplen MK, Anfora G, Biondi A, Choi D-S, Chu D et al (2015) Invasion biology of spotted wing Drosophila (Drosophila suzukii): a global perspective and future priorities. J Pest Sci 88:469–494

    Article  Google Scholar 

  • Baroffio C (2015) Four years of experience with SWD in Switzerland. Presentation at the Nordic Seminar, Copenhagen

  • Bartelt RJ, Schaner AM, Jackson LL (1985) Cis-Vaccenyl acetate as an aggregation pheromone in Drosophila melanogaster. J Chem Ecol 11:1747–1756

    Article  CAS  PubMed  Google Scholar 

  • Becher PG, Bengtsson M, Hansson BS, Witzgall P (2010) Flying the Fly: long-range flight behavior of Drosophila melanogaster to attractive odors. J Chem Ecol 36:599–607

    Article  CAS  PubMed  Google Scholar 

  • Becher PG, Flick G, Rozpędowska E, Schmidt A, Hagman A, Lebreton S, Larsson MC, Hansson BS, Piškur J, Witzgall P, Bengtsson M (2012) Yeast, not fruit volatiles mediate Drosophila melanogaster attraction, oviposition and development. Funct Ecol 26:822–828

    Article  Google Scholar 

  • Beers EH, Van Steenwuk RA, Shearer PW, Coates WW, Grant JA (2011) Developing Drosophila suzukii management programs for sweet cherry in the western United States. Pest Manag Sci 67:1386–1395

    Article  CAS  PubMed  Google Scholar 

  • Begon M (1982) Yeasts and Drosophila. In: Ashburner M, Carson HL, Thompson J (eds) The genetics and biology of Drosophila, vol 3a. Academic Press, London, pp 345–384

    Google Scholar 

  • Bell MR, Kanavel RF (1977) Field tests of a nuclear polyhedrosis virus in a bait formulation for control of pink bollworm and Heliothis spp. in cotton in Arizona. J Econ Entomol 70:625–629

    Article  Google Scholar 

  • Ben Ami E, Yuval B, Jurkevitch E (2010) Maniupation of the microbiota of mass-reared Mediterranean fruit flies Ceratitis capitata (Diptera: Tephritidae) improves sterile male sexual performance. ISME J 4:28–37

    Article  PubMed  Google Scholar 

  • Ben-Yosef M, Aharon Y, Jurkevitch E, Yuval B (2010) Give us the tools and we will do the job: symbiotic bacteira affect olive fly fitness in a diet-dependent fashion. Proc R Soc Lond B 277:1545–1552

    Article  CAS  Google Scholar 

  • Ben-Yosef M, Pasternak Z, Jurkevitch E, Yuval B (2015) Symbiotic bacteria enable olive fly larvae to overcome host defences. R Soc Open Sci 2:150170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bokulich NA, Mills DA (2013) Improved selection of internal transcribed spacer-specific primers enables quantitative, ultra-high-throughput profiling of fungal communities. Appl Environ Microbiol 79:2519–2526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bos M, Burnet B, Farrow R, Woods RA (1976) Development of Drosophila on sterol mutants of the yeast Saccharomyces cerevisiae. Genet Res 28:163–176

    Article  CAS  PubMed  Google Scholar 

  • Bownes M, Scott A, Shirras A (1988) Dietary components modulate yolk protein gene transcription in Drosophila melanogaster. Development 103:119–128

    CAS  PubMed  Google Scholar 

  • Broderick NA, Lemaitre B (2012) Gut-associated microbes of Drosophila melanogaster. Gut Microbes 3:307–321

    Article  PubMed  PubMed Central  Google Scholar 

  • Bruck DJ, Bolda M, Tanigoshi L, Klick J, Kleiber J, DeFrancesco J, Gerdeman B, Spitler H (2011) Laboratory and field comparisons of insecticides to reduce infestation of Drosophila suzukii in berry crops. Pest Manag Sci 67:1375–1385

    Article  CAS  PubMed  Google Scholar 

  • Burand JP, Hunter WB (2013) RNAi: future in insect management. J Invertebr Pathol 112:S68–S74

    Article  CAS  PubMed  Google Scholar 

  • Burrack HJ, Asplen M, Bahder L, Collins J, Drummond FA, Guédot C, Isaacs R, Johnson D, Blanton A, Lee JC, Loeb G, Rodriguez-Saona C, Van Timmeren S, Walsh D, McPhie DR (2015) Multi-state comparison of attractants for monitoring Drosophila suzukii (Diptera: Drosophilidae) in blueberries and caneberries. Environ Entomol. doi:10.1093/ee/nvv022

    PubMed  Google Scholar 

  • Buser CC, Newcomb RD, Gaskett AC, Goddard MR (2014) Niche construction initiates the evolution of mutualistic interactions. Ecol Lett 17:1257–1264

    Article  PubMed  Google Scholar 

  • Caballero Oritz S, Trienens M, Rohlfs M (2013) Induced fungal resistance to insect grazing: reciprocal fitness consequences and fungal gene expression in the Drosophila-Aspergillus model system. Plos One 8:e74951

    Article  CAS  Google Scholar 

  • Cha DH, Adams T, Rogg H, Landolt PJ (2012) Identification and field evaluation of fermentation volatiles from wine and vinegar that mediate attraction of spotted wing drosophila, Drosophila suzukii. J Chem Ecol 38:1419–1431

    Article  CAS  PubMed  Google Scholar 

  • Chandler JA, Lang JM, Bhatnagar S, Eisen JA, Kopp A (2011) Bacterial communities of diverse Drosophila species: ecological context of a host-microbe model system. PLoS Genet 7:e1002272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandler JA, Eisen JA, Kopp A (2012) Yeast communities of diverse Drosophila species: comparison of two symbiont groups in the same hosts. Appl Environ Microbiol 78:7327–7336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandler JA, James PM, Jospin G, Lang JM (2014) The bacterial communities of Drosophila suzukii collected from undamaged cherries. PeerJ 2:e474

    Article  PubMed  PubMed Central  Google Scholar 

  • Charlu S, Wisotsky Z, Medina A, Dahanukar A (2013) Acid sensing by sweet and bitter taste neurons in Drosophila melanogaster. Nat Commun 4:2042

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Christiaens JF, Franco LM, Cools TL, De Meester L, Michiels J, Wenseleers T, Hassan BA, Yaksi E, Verstrepen KJ (2014) The fungal aroma gene ATF1 promotes dispersal of yeast cells through insect vectors. Cell Rep 9:425–432

    Article  CAS  PubMed  Google Scholar 

  • Cini A, Ioriatti C, Anfora G (2012) A review of the invasion of Drosophila suzukii in Europe and a draft research agenda for integrated pest management. Bull Insectol 65:149–160

    Google Scholar 

  • Cowles RS, Rodriguez-Saona C, Holdcraft R, Loeb GM, Elsensohn JE, Hesler SP (2015) Sucrose improves insecticidal activity against Drosophila suzukii (Diptera: Drosophilidae). J Econ Entomol 108:640–653

    Article  PubMed  Google Scholar 

  • Daane KM, Johnson MW (2010) Olive fruit fly: managing an ancient pest in modern times. Annu Rev Entomol 55:151–169

    Article  CAS  PubMed  Google Scholar 

  • Davis TS, Landolt PJ (2013) A survey of insect assemblages responding to volatiles from a ubiquitous fungus in an agricultural landscape. J Chem Ecol 39:860–868

    Article  CAS  PubMed  Google Scholar 

  • Davis TS, Crippen TL, Hofstetter RW, Tomberlin JK (2013) Microbial volatile emissions as insect semiochemicals. J Chem Ecol 39:840–859

    Article  CAS  PubMed  Google Scholar 

  • De Ros G, Conci S, Pantezzi T, Savini G (2015) The economic impact of invasive pest Drosophila suzukii on berry production in the Province of Trento, Italy. J Berry Res 5(2):89–96

    Article  Google Scholar 

  • Ding SW (2010) RNA-based antiviral immunity. Nat Rev Immunol 10:632–644

    Article  CAS  PubMed  Google Scholar 

  • Ditman LP, Cory EN (1933) The response of corn earworm moths to various sugar solutions. J Econ Entomol 26:109–115

    Article  CAS  Google Scholar 

  • Douglas AE (2007) Symbiotic microorganisms: untapped resources for insect pest control. Trends Biotechnol 25:338–342

    Article  CAS  PubMed  Google Scholar 

  • Douglas AE (2015) Multiorganismal insects: diversity and function of resident microorganisms. Annu Rev Entomol 60:17–34

    Article  CAS  PubMed  Google Scholar 

  • Dweck HKM, Ebrahim SAM, Farhan A, Hansson BS, Stensmyr MC (2015) Olfactory proxy detection of dietary antioxidants in Drosophila. Curr Biol 25:1–12

    Article  CAS  Google Scholar 

  • El-Sayed AM, Suckling DM, Wearing CH, Byers JA (2006) Potential of mass trapping for long-term pest management and eradication of invasive species. J Econ Entomol 99:1550–1564

    Article  CAS  PubMed  Google Scholar 

  • El-Sayed AM, Suckling DM, Byers JA, Jang EB, Wearing CH (2009) Potential of “lure and kill” in long-term pest management and eradication of invasive species. J Econ Entomol 102:815–835

    Article  CAS  PubMed  Google Scholar 

  • Engel P, Moran NA (2013) The gut microbiota of insects—diversity in structure and function. FEMS Microbial Rev 37:699–735

    Article  CAS  Google Scholar 

  • Escobar-Zepeda A, Vera-Ponce de León A, Sanchez-Flores A (2015) The road to metagenomics: from microbiology to DNA sequencing technologies and bioinformatics. Front Genet 6:348

    Article  PubMed  PubMed Central  Google Scholar 

  • Estes AM, Nestel D, Belcari A, Jessup A, Rempoulakis P, Economopoulos AP (2012) A basis for the renewal of sterile insect technique for the olive fly, Bactrocera oleae (Rossi). J Appl Entomol 136:1–16

    Article  Google Scholar 

  • Fishilevich E, Domingos AI, Asahina K, Naef F, Vosshall LB, Louis M (2005) Chemotaxis behavior mediated by single larval olfactory neurons in Drosophila. Curr Biol 15:2086–2096

    Article  CAS  PubMed  Google Scholar 

  • Ganter PF (2006) Yeast and invertebrate associations. In: Rosa CA, Péter G (eds) The yeast handbook: biodiversity and ecophysiology of yeast. Springer, Berlin, pp 303–370

    Chapter  Google Scholar 

  • Gilbert DG (1980) Dispersal of yeasts and bacteria by Drosophila in a temperate forest. Oecologia 46:135–137

    Article  Google Scholar 

  • Gorter JA, Jagadeesh S, Gahr C, Boonekamp JJ, Levine JD, Billeter JC (2016) The nutritional and hedonic value of food modulate sexual receptivity in Drosophila melanogaster females. Sci Rep 6:19441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu L, Knipple DC (2013) Recent advances in RNA interference research in insects: implications for future insect pest management strategies. Crop Prot 45:36–40

    Article  CAS  Google Scholar 

  • Hamby KA, Hernández A, Boundy-Mills K, Zaloma FG (2012) Associations of Yeasts with Spotted-Wing Drosophila (Drosophila suzukii; Diptera: Drosophilidae) in Cherries and Raspberries. Appl Environ Microbiol 78:4869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamby KA, Bolda MP, Sheehan ME, Zalom FG (2014) Seasonal monitoring for Drosophila suzukii (Diptera: Drosophilidae) in California commercial raspberries. Environ Entomol 43:1008–1018

    Article  CAS  PubMed  Google Scholar 

  • Hamm CA, Begun DJ, Vo A, Smith CCR, Perot S, Shaver AO, Jaenike J, Turelli M (2014) Wolbachia do not live by reproductive manipulation alone: infection polymorphism in Drosophila suzukii and D. subpulchrella. Mol Ecol 23:4871–4885

    Article  PubMed  PubMed Central  Google Scholar 

  • Hampton E, Koski C, Barsoian O, Faubert H, Cowles RS, Alm SR (2014) Use of early ripening cultivars to avoid infestation and mass trapping to manage Drosophila suzukii (Diptera: Drosophilidae) in Vaccinium corymbosum (Ericales: Ericaceae). J Econ Entomol 107(5):1849–1857

    Article  PubMed  Google Scholar 

  • Hardin JA, Kraus DA, Burrack HJ (2015) Diet quality mitigates intraspecific larval competition in Drosophila suzukii. Entomol Exp Appl 56:59–65

    Article  CAS  Google Scholar 

  • Iglesias LE, Nyoike TW, Liburd OE (2014) Effect of trap design, bait type, and age on captures of Drosophila suzukii (Diptera: Drosophilidae) in berry crops. J Econ Entomol 107:1508–1518

    Article  PubMed  Google Scholar 

  • Janson EM, Stireman JO III, Singer MS, Abbot P (2008) Phytophagous insect-microbe mutualisms and adaptive evolutionary diversification. Evolution 62:997–1012

    Article  PubMed  Google Scholar 

  • Joseph RM, Devineni AV, King IFG, Heberlein U (2009) Ovipostion preference for and positional avoidance of acetic acid provide a model for competing behavioral drives in Drosophila. Proc Natl Acad Sci USA 106:11352–11357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keesey IW, Knaden M, Hansson BS (2015) Olfactory specialization in Drosophila suzukii supports an ecological shift in host preference from rotten to fresh fruit. J Chem Ecol 41:121–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleiber JR, Unelius R, Lee JC, Suckling DM, Qian MC, Bruck DJ (2014) Attractiveness of fermentation and related products to spotted wing Drosophila (Diptera: Drosophilidae). Environ Entomol 43:439–447

    Article  CAS  PubMed  Google Scholar 

  • Knief C (2014) Analysis of plant microbe interactions in the era of next generation sequencing technologies. Front Plant Sci 5:216

    Article  PubMed  PubMed Central  Google Scholar 

  • Knight A, Witzgall P (2013) Combining mutualistic yeast and pathogenic virus—a novel method for codling moth control. J Chem Ecol 39:1019–1026

    Article  CAS  PubMed  Google Scholar 

  • Knight AL, Basoalto E, Witzgall P (2015) Improving the performance of the granulosis virus of codling moth (Lepidoptera: Tortricidae) by adding the yeast Saccharomyces cerevisiae with sugar. Environ Entomol 44:252–259

    Article  PubMed  Google Scholar 

  • Kwon JY, Dahanukar A, Weiss LA, Carlson JR (2007) The molecular basis of CO2 reception in Drosophila. Proc Natl Acad Sci USA 104:3574–3578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam SSTH, Howell KS (2015) Drosophila-associated yeast species in vineyard ecosystems. FEMS Microbiol Lett 362(20):1–7

    Article  Google Scholar 

  • Landolt PI, Alfaro JF (2001) Trapping Lacanobia subjuncta, Xestia c-nigrum, and Mamestra configurata (Lepidoptera: Noctuidae) with acetic acid and 3-methyl-1-butanol in controlled release dispensers. Environ Entomol 30:656–662

    Article  CAS  Google Scholar 

  • Landolt PI, Hammond PC (2001) Species’ composition of moths captured in traps baited with acetic acid and 3-methyl-1-butanol, in Yakima County, Washington. J Lepidopterists Soc 55:53–58

    Google Scholar 

  • Landolt PJ, Adams T, Rogg H (2011) Trapping spotted wing drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), with combinations of vinegar and wine, and acetic acid and ethanol. J Appl Entomol 136:148–154

    Article  CAS  Google Scholar 

  • Landolt PJ, Adams T, Rogg H (2012) Trapping spotted wing drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), with combinations of vinegar and wine, and acetic acid and ethanol. J Appl Entomol 136:148–154

    Article  CAS  Google Scholar 

  • Leblanc L, Vargas RI, Rubinoff D (2010) A comparison of nontarget captures in biolure and liquid protein food lures in Hawaii. Proc Hawaii Entomol Soc 42:15–22

    Google Scholar 

  • Lebreton S, Becher PG, Hansson BS, Witzgall P (2012) Attraction of Drosophila melanogaster males to food-related and fly odours. J Insect Physiol 58:125–129

    Article  CAS  PubMed  Google Scholar 

  • Lebreton S, Trona F, Borrero-Echeverry P, Bilz F, Grabe V, Becher PG, Carlsson MA, Nässel DR, Hansson BS, Sachse S, Witzgall P (2015) Feeding regulates sex pheromone attraction and courtship in Drosophila females. Sci Rep 5:13132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JC, Burrack HJ, Barrantes LD, Beers EH, Dreves AJ, Hamby KA, Haviland DR, Isaacs R, Richardson TA, Shearer PW, Stanley CA, Walsh DB, Walton VM, Zalom FG, Bruck DJ (2012) Evaluation of monitoring traps for Drosophila suzukii (Diptera: Drosophilidae) in North America. J Econ Entomol 105:1350–1357

    Article  PubMed  Google Scholar 

  • Lee JC, Shearer PW, Barrantes L, Beers E, Burrack H, Dalton DT, Dreves AJ, Gut LJ, Hamby KA, Haviland DR, Isaacs R, Nielsen AL, Richardson T, Rodriguez-Saona C, Stanly CA, Walsh DB, Walton VM, Yee WL, Zalom FG, Bruck DJ (2013) Trap designs for monitoring Drosophila suzukii (Diptera: Drosophilidae). Environ Entomol 42:1348–1355

    Article  PubMed  Google Scholar 

  • Li F, Scott MJ (2016) CRISPER/Cas9-mediated mutagenesis of the white and Sexlethal loci in the invasive pest, Drosophila suzukii. Biochem Biophys Res Commun 469:911–916

    Article  CAS  PubMed  Google Scholar 

  • Lindsay SL (1958) Preferences of Drosophila larvae. Am Nat 92:279–285

    Article  Google Scholar 

  • Lopez-D F, Steiner LF, Holbrook FR (1971) A new yeast hydrolysate-borax bait for trapping the Caribbean fruit fly. J Econ Entomol 64:1541–1543

    Article  CAS  Google Scholar 

  • Markow TA, O’Grady PM (2005) Evolutionary genetics of reproductive behavior in Drosophila: connecting the dots. Annu Rev Genet 39:263–291

    Article  CAS  PubMed  Google Scholar 

  • Mazzetto F, Gonella E, Alma A (2015) Wolbachia infection affects female fecundity in Drosophila suzukii. Bull Insectol 68:153–157

    Google Scholar 

  • Mazzetto F, Gonella E, Crotti E, Vacchini V, Syrpas M, Pontini M, Mangelinckx S, Daffonchio D, Alma A (2016) Olfactory attraction of Drosophila suzukii by symbiotic acetic acid bacteria. J Pest Sci. doi:10.1007/s10340-016-0754-7

    Google Scholar 

  • Mori BA, Whitener AB, Leinweber Y, Revadi S, Beers EH, Witzgall P, Becher PG (accepted) Enhanced yeast feeding following mating facilitates control of the invasive fruit pest Drosophila suzukii. J Appl Ecol

  • Mueller UG, Gerardo NM, Aanen DK, Six DL, Schultz TR (2005) The evolution of agriculture in insects. Annu Rev Ecol Evol Syst 36:563–569

    Article  Google Scholar 

  • Murphy KA, West JD, Kwok RS, Chiu JC (2016a) Accelerating research on Spotted Wing Drosophila management using genomic technologies. J Pest Sci. doi:10.1007/s10340-016-0741-z

    Google Scholar 

  • Murphy KA, Tabuloc CA, Cervantes KR, Chiu JC (2016b) Ingestion of genetically modified yeast symbiont reduces fitness of an insect pest via RNA interference. Sci Rep 6:22587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newell PD, Douglas AE (2014) Interspecies interactions determine the impact of the gut microbiota on nutrient allocation in Drosophila melanogaster. Appl Environ Microbiol 80:788–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phaff HJ, Miller MW, Recca JA, Shifrine M, Mrak EM (1956) Studies on the ecology of Drosophila in the Yosemite Region of California. II Yeasts found in the alimentary canal of Drosophila. Ecology 37(3):533–538

    Article  Google Scholar 

  • Pham CK, Ray A (2015) Conservation of olfactory avoidance in Drosophila species and identification of repellents for Drosophila suzukii. Sci Rep 5:11527

    Article  Google Scholar 

  • Pulvirenti A, Zambonelli C, Todaro A, Giudici P (2002) Interspecific hybridisation by digestive tract of invertebrates as a source of environmental biodiversity within the Saccharomyces cerevisiae. Ann Microbiol 52:245–255

    Google Scholar 

  • Reuter M, Bell G, Greig D (2007) Increased outbreeding in yeast in response to dispersal by an insect vector. Curr Biol 17:R81–R83

    Article  CAS  PubMed  Google Scholar 

  • Revadi S, Vitagliano S, Stacconi MVR, Ramasamy S, Mansurian S, Carlin S, Vrhovsek U, Becher PG, Mazzoni V, Rota-Stabelli O, Angeli S, Dekker T, Anfora G (2015) Olfactory responses of Drosophila suzukii females to host plant volatiles. Physiol Entomol 40:54–64

    Article  CAS  Google Scholar 

  • Ridley EV, Wong AC-N, Westmiller S, Douglas AE (2012) Impact of the resident microbiota on the nutritional phenotype of Drosophila melanogaster. PLoS One 7:e36765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheidler NH, Liu C, Hamby KA, Zalom FG, Syed Z (2015) Volatile codes: correlation of olfactory signals and reception in Drosophila-yeast chemical communication. Sci Rep 5:14059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schetelig MF, Handler AM (2013) Germline transformation of the spotted wing drosophild, Drosophila suzukii, with a piggyBac transposon vector. Genetica 141:189–193

    Article  CAS  PubMed  Google Scholar 

  • Segata N, Boernigen D, Tickle TL, Morgan XC, Garrett WS, Huttenhower C (2013) Computational meta’omics for microbial community studies. Mol Syst Biol 9:666

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharon G, Segal D, Ringo JM, Hefetz A, Zilber-Rosenberg I, Rosenberg E (2010) Commensal bacteria play a role in mating preference of Drosophila melanogaster. Proc Natl Acad Sci USA 107:20051–20056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin SC, Kim S-H, You H, Kim B, Kim AC, Lee K-A, Yoon J-H, Ryu J-H, Lee W-J (2011) Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science 334:670–674

    Article  CAS  PubMed  Google Scholar 

  • Stamps JA, Yang LH, Morales VM, Boundy-Mills KL (2012) Drosophila regulate yeast density and increase yeast community similarity in a natural substrate. PLoS One 7:e42238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Starmer WT (1981) A comparison of Drosophila habitats according to the physiological attributes of the associated yeast communities. Evolution 35:38–52

    Article  CAS  Google Scholar 

  • Stensmyr MC, Giordano E, Balloi A, Angioy A-M, Hansson BS (2003) Novel natural ligands for Drosophila olfactory receptor neurons. J Exp Biol 206:715–724

    Article  CAS  PubMed  Google Scholar 

  • Stensmyr MC, Dweck HKM, Farhan A, Ibba I, Strutz A, Mukunda L, Linz J, Grabe V, Steck K, Lavista-Llanos S, Wicher D, Sachse S, Knaden M, Becher PG, Seki Y, Hansson BS (2012) A conserved dedicated olfactory circuit for detecting harmful microbes in Drosophila. Cell 151:1345–1357

    Article  CAS  PubMed  Google Scholar 

  • Suh SO, McHugh JV, Pollock DD, Blackwell M (2005) The beetle gut: a hyperdiverse source of novel yeasts. Mycol Res 109:261–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taning CNT, Christiaens O, Berkvens N, Casteels H, Maes M, Smagghe G (2016) Oral RNAi to control Drosophila suzukii: laboratory testing against larval and adult stages. J Pest Sci. doi:10.1007/s10340-016-0736-9

    Google Scholar 

  • Thomas DB (2003) Nontarget insects captured in fruit fly (Diptera: Tephritidae) surveillance traps. J Econ Entomol 96:1732–1737

    Article  PubMed  Google Scholar 

  • Tochen S, Walton VM, Lee JC (2016) Impact of floral feeding on adult Drosophila suzukii survival and nutrient status. J Pest Sci (in press)

  • Van Timmeren S, Isaacs R (2013) Control of spotted wing drosophila, Drosophila suzukii by specific insecticides and by conventional and organic crop protection programs. Crop Prot 54:125–133

    Google Scholar 

  • Venu I, Durisko Z, Xu J, Dukas R (2014) Social attraction mediated by fruit flie’s microbiome. J Exp Biol 217:1346–1352

    Article  PubMed  Google Scholar 

  • Wallingford AK, Hesler SP, Cha DH, Loeb GM (2015) Behavioral responses of spotted-wing drosophila, Drosophila suzukii Matsumura, to aversive odors and a potential oviposition deterrent in the field. Pest Manag Sci. doi:10.1002/ps.4040

    PubMed  Google Scholar 

  • Walsh DB, Bolda MP, Goodhue RE, Dreves AJ, Lee J, Bruck DJ, Walton VM, O’Neal SD, Zalom FG (2011) Drosophila suzukii (Diptera: Drosophilidae): invasive pest of ripening soft fruit expanding its geographic range and damage potential. J Integr Pest Manag 2:G1–G7

    Article  Google Scholar 

  • Wertheim B, Marchais J, Vet LM, Dicke M (2002) Allee effect in larval resource exploitation in Drosophila: an interaction among density of adults, larvae, and micro-organisms. Ecol Entomol 27:608–617

    Article  Google Scholar 

  • Williams T, Cisneros J, Penagos DI, Valle J, Tamez-Guerra P (2004) Ultralow rates of spinosad in phagostimulant granules provide control of Spodoptera frugiperda (Lepidoptera: Noctuidae) in Maize. J Econ Entomol 97:422–428

    Article  CAS  PubMed  Google Scholar 

  • Wisotsky Z, Medina A, Freeman E, Dahanukar A (2011) Evolutionary differences in food preference rely on Gr64e, a receptor for glycerol. Nat Neurosci 12:1534–1542

    Article  CAS  Google Scholar 

  • Witzgall P, Proffit M, Rozpedowska E, Becher PG, Andreadis S, Coracini M, Lindblom TUT, Ream LJ, Hagman A, Bengtsson M, Kurtzman CP, Piškur J, Knight A (2012) “This is not an apple”—yeast mutualism in codling moth. J Chem Ecol 38:949–957

    Article  PubMed  Google Scholar 

  • Wong CNA, Ng P, Dougal AE (2011) Low-diversity bacterial community in the gut of the fruitfly Drosophila melanogaster. Environ Microbiol 13:1889–1900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada R, Deshpanade SA, Bruce KD, Mak EM, Ja WW (2015) Microbes promote amino acid harvest to reduce undernutrition in Drosophila. Cell Rep 10:865–872

    Article  CAS  Google Scholar 

  • Zotti MJ, Smagghe G (2015) RNAi technology for insect management and protection of beneficial insects from diseases: lessons, challenges and risk assessments. Neotrop Entomol. doi:10.1007/s13744-015-0291-8

    PubMed  Google Scholar 

  • Zug R, Hammerstein P (2015) Bad guys turned nice? A critical assessment of Wolbachia mutualism in arthropod hosts. Biol Rev 90:89–111

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

KAH was funded by the North American Bramble Growers Research Foundation to perform research on D. suzukii microbe interactions in 2015. PGB was supported by the Swedish Research Council Formas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul G. Becher.

Ethics declarations

Ethical standards

This review complies with ethical principles.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by N. Desneux.

Special Issue: Spotted Wing Drosophila.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamby, K.A., Becher, P.G. Current knowledge of interactions between Drosophila suzukii and microbes, and their potential utility for pest management. J Pest Sci 89, 621–630 (2016). https://doi.org/10.1007/s10340-016-0768-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-016-0768-1

Keywords

Navigation