Skip to main content
Log in

Flying the Fly: Long-range Flight Behavior of Drosophila melanogaster to Attractive Odors

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The fruit fly, Drosophila melanogaster Meigen (Diptera: Drosophilidae), is a model for how animals sense, discriminate, and respond to chemical signals. However, with D. melanogaster our knowledge of the behavioral activity of olfactory receptor ligands has relied largely on close-range attraction, rather than on long-range orientation behavior. We developed a flight assay to relate chemosensory perception to behavior. Headspace volatiles from vinegar attracted 62% of assayed flies during a 15-min experimental period. Flies responded irrespective of age, sex, and mating state, provided they had been starved. To identify behaviorally relevant chemicals from vinegar, we compared the responses to vinegar and synthetic chemicals. Stimuli were applied by a piezoelectric sprayer at known and constant release rates. Re-vaporized methanol extracts of Super Q-trapped vinegar volatiles attracted as many flies as vinegar. The main volatile component of vinegar, acetic acid, elicited significant attraction as a single compound. Two other vinegar volatiles, 2-phenyl ethanol and acetoin, produced a synergistic effect when added to acetic acid. Geosmin, a microbiological off-flavor, diminished attraction to vinegar. This wind tunnel assay based on a conspicuous and unambiguous behavioral response provides the necessary resolution for the investigation of physiologically and ecologically relevant odors and will become an essential tool for the functional analysis of the D. melanogaster olfactory system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allen, M. J., Godenschwege, T. A., Tanouye, M. A., and Phelan, P. 2006. Making an escape: development and function of the Drosophila giant fibre system. Semin. Cell Dev. Biol. 17:31–41.

    Article  CAS  PubMed  Google Scholar 

  • Andersson, S., Nilsson, L. A., Groth, I., and Bergström, G. 2002. Floral scents in butterfly-pollinated plants: possible convergence in chemical composition. Bot. J. Linn. Soc. 140:129–153.

    Article  Google Scholar 

  • Asahina, K., Louis, M., Piccinotti, S., and Vosshall, L. B. 2009. A circuit supporting concentration-invariant odor perception in Drosophila. J. Biol. 8:9.

    Article  PubMed  Google Scholar 

  • Baker, T. C., Fadamiro, H. Y., and Cossé, A. A. 1998. Moth uses fine tuning for odor resolution. Nature 393:530.

    Article  CAS  Google Scholar 

  • Bartelt, R. J., Schaner, A. M., and Jackson, L. L. 1985. cis-Vaccenyl acetate as an aggregation pheromone in Drosophila melanogaster. J. Chem. Ecol. 11:1747–1756.

    Article  CAS  Google Scholar 

  • Benton, R., Vannice, K. S., and Vosshall, L. B. 2007. An essential role for a CD36-related receptor in pheromone detection in Drosophila. Nature 450:289–293.

    Article  CAS  PubMed  Google Scholar 

  • Budick, S. A. and Dickinson, M. H. 2006. Free-flight responses of Drosophila melanogaster to attractive odors. J. Exp. Biol. 209:3001–3017.

    Article  PubMed  Google Scholar 

  • Card, G. and Dickinson, M. H. 2008. Visually mediated motor planning in the escape response of Drosophila. Curr. Biol. 18:1300–1307.

    Article  CAS  PubMed  Google Scholar 

  • Chow, D. M. and Frye, M. A. 2008. Context-dependent olfactory enhancement of optomotor flight control in Drosophila. J. Exp. Biol. 211:2478–2485.

    Article  PubMed  Google Scholar 

  • Cobb, M. 1999. What and how do maggots smell? Biol. Rev. 74:425–459.

    Article  Google Scholar 

  • Cocchi, M., Durante, C., Grandi, M., Manzini, D., and Marchetti, A. 2008. Three-way principal component analysis of the volatile fraction by HS-SPME/GC of aceto balsamico tradizionale of modena. Talanta 74:547–554.

    Article  CAS  PubMed  Google Scholar 

  • Couto, A., Alenius, M., and Dickson, B. J. 2005. Molecular, anatomical, and functional organization of the Drosophila olfactory system. Curr. Biol. 15:1535–1547.

    Article  CAS  PubMed  Google Scholar 

  • De Bruyne, M. and Baker, T. C. 2008. Odor detection in insects: volatile codes. J. Chem. Ecol. 34:882–897.

    Article  CAS  PubMed  Google Scholar 

  • De Bruyne, M., Foster, K., and Carlson, J. R. 2001. Odor coding in the Drosophila antenna. Neuron 30:537–552.

    Article  PubMed  Google Scholar 

  • Dickson, B. J. 2008. Wired for sex: the neurobiology of Drosophila mating decisions. Science 322:904–909.

    Article  CAS  PubMed  Google Scholar 

  • El-Sayed, A. M. 2009. The pherobase: Database of insect pheromones and semiochemicals. http://www.pherobase.com/.

  • El-Sayed, A., Gödde, J., and Arn, H. 1999. Sprayer for quantitative application of odor stimuli. Environ. Entomol. 28:947–953.

    Google Scholar 

  • Fischler, W., Kong, P., Marella, S., and Scott, K. 2007. The detection of carbonation by the Drosophila gustatory system. Nature 448:1054–1058.

    Article  CAS  PubMed  Google Scholar 

  • Fishilevich, E., and Vosshall, L. B. 2005. Genetic and functional subdivision of the Drosophila antennal lobe. Curr. Biol. 15:1548–1553.

    Article  CAS  PubMed  Google Scholar 

  • Fujii, S., Parthasarathy, K., Hardin, P., and Amrein, H. 2007. Nocturnal male sex drive in Drosophila. Curr. Biol. 17:244–251.

    Article  CAS  PubMed  Google Scholar 

  • Guerrero, E. D., Marin, R. N., Mejias, R. C., and Barroso, C. G. 2007. Stir bar sorptive extraction of volatile compounds in vinegar: validation study and comparison with solid phase microextraction. J. Chromatogr. A 1167:18–26.

    Article  CAS  PubMed  Google Scholar 

  • Hallem, E. A. and Carlson, J. R. 2006. Coding of odors by a receptor repertoire. Cell 125:143–160.

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann, A. A. and Parsons, P. A. 1984. Olfactory response and resource utilization in Drosophila: interspecific comparisons. Biol. J. Lin. Soc. 22:43–53.

    Article  Google Scholar 

  • Inoshita, T. and Tanimura, T. 2008. Cellular identification of water gustatory receptor neurons and their central projection pattern in Drosophila. Proc. Natl. Acad. Sci. USA 103:1094–1099.

    Article  Google Scholar 

  • Jefferis, G. S. X. E., Potter, C. J., Chan, A. M., Marin, E. C., Rohlfing, T., Maurer, C. R., and Luo, L. 2007. Comprehensive maps of Drosophila higher olfactory centers: spatially segregated fruit and pheromone representation. Cell 128:1187–1203.

    Article  CAS  PubMed  Google Scholar 

  • Joseph, R. M., Devineni, A., King, I. F. G., and Heberlein U. 2009. Oviposition preference for and positional avoidance of acetic acid provide a model for competing behavioral drives in Drosophila. PNAS 106:11352–11357.

    Article  CAS  PubMed  Google Scholar 

  • La Guerche, S., Dauphi, B., Pons, M., Dominique, B., and Darriet, P. 2006. Characterization of some mushroom and earthy off-odors microbially induced by the development of rot on grapes. J. Agric. Food Chem. 54:9193–9200.

    Article  PubMed  Google Scholar 

  • Landolt, P. J. 2000. New chemical attractants for trapping Lacanobia subjuncta, Mamestra configurata, and Xestia c-nigrum (Lepidoptera: Noctuidae). J. Econ. Entomol. 93:101–106.

    Article  CAS  PubMed  Google Scholar 

  • Liu, L., Li, Y., Wang, R., Yin, C., Dong, Q., Hing, H., Kim, C., and Welsh, M. J. 2007. Drosophila hygrosensation requires the TRP channels water witch and nanchung. Nature 450:294–299.

    Article  CAS  PubMed  Google Scholar 

  • Root, C. M., Masuyama, K., Green, D. S., Enell, L. E., Nässel, D. R., Lee, C.-H., and Wang, J. W. 2008. A presynaptic gain control mechanism fine-tunes olfactory behavior. Neuron 59:311–321.

    Article  CAS  PubMed  Google Scholar 

  • Ruebenbauer, A., Schlyter, F., Hansson, B. S., Löfstedt, C., and Larsson, M. C. 2008. Genetic variability and robustness of host odor preference in Drosophila melanogaster. Curr. Biol. 18:1438–1443.

    Article  CAS  PubMed  Google Scholar 

  • Schlief, M. L. and Wilson, R. I. 2007. Olfactory processing and behavior downstream from highly selective receptor neurons. Nat. Neurosci. 10:623–630.

    Article  CAS  PubMed  Google Scholar 

  • Semmelhack, J. L. and Wang, J. W. 2009. Select Drosophila glomeruli mediate innate olfactory attraction and aversion. Nature 459:218–224.

    Article  CAS  PubMed  Google Scholar 

  • Shang, Y., Claridge-Chang, A., Sjulson, L., Pypaert, M., and Miesenböck, G. 2007. Excitatory local circuits and their implications for olfactory processing in the fly antennal lobe. Cell 128:601–612.

    Article  CAS  PubMed  Google Scholar 

  • Stensmyr, M. C., Giordano, E., Balloi, A., Angioy, A. M., and Hansson, B. S. 2003. Novel natural ligands for Drosophila olfactory receptor neurones. J. Exp. Biol. 206:715–724.

    Article  CAS  PubMed  Google Scholar 

  • Tanoue, S., Krishnan, P., Chatterjee, A., and Hardin, P. E. 2008. G protein-coupled receptor kinase 2 is required for rhythmic olfactory responses in Drosophila. Curr. Biol. 18:787–794.

    Article  CAS  PubMed  Google Scholar 

  • Tasin, M., Bäckman, A.-C., Bengtsson, M., Varela, N., Ioriatti, C., and Witzgall, P. 2006. Wind tunnel attraction of grapevine moth females, Lobesia botrana, to natural and artificial grape odour. Chemoecology 16:87–92.

    Article  CAS  Google Scholar 

  • Trimarchi, J. R. and Schneiderman, A. M. 1995. Different neural pathways coordinate Drosophila flight initiations evoked by visual and olfactory stimuli. J. Exp. Biol. 198:1099–1104.

    CAS  PubMed  Google Scholar 

  • Vosshall, L. B. and Stocker, R. E. 2007. Molecular architecture of smell and taste in Drosophila. Annu. Rev. Neurosci. 30:505–533.

    Article  CAS  PubMed  Google Scholar 

  • Zeppa, G., Giordano, M., Gerbi, V., and Meglioli, G. 2002. Characterisation of volatile compounds in three acetification batteries used for the production of “Aceto Balsamico Tradizionale di Reggio Emilia”. Ital. J. Food. Sci. 14:247–266.

    CAS  Google Scholar 

  • Zhu, J., Park, K.-C., and Baker, T. C. 2003. Identification of odors from overripe mango that attract vinegar flies, Drosophila melanogaster. J. Chem. Ecol. 29:899–909.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Linnaeus initiative “Insect Chemical Ecology, Ethology and Evolution” IC-E3 (Formas, SLU). We thank Teun Dekker and Mattias Larsson for helpful comments and discussions. Jörgen Lantz constructed the wind tunnel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul G. Becher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becher, P.G., Bengtsson, M., Hansson, B.S. et al. Flying the Fly: Long-range Flight Behavior of Drosophila melanogaster to Attractive Odors. J Chem Ecol 36, 599–607 (2010). https://doi.org/10.1007/s10886-010-9794-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-010-9794-2

Key Words

Navigation