Skip to main content
Log in

Olfactory attraction of Drosophila suzukii by symbiotic acetic acid bacteria

  • Original Paper
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

Some species of acetic acid bacteria (AAB) play relevant roles in the metabolism and physiology of Drosophila spp. and in some cases convey benefits to their hosts. The pest Drosophila suzukii harbors a set of AAB similar to those of other Drosophila species. Here, we investigate the potential to exploit the ability of AAB to produce volatile substances that attract female D. suzukii. Using a two-way olfactometer bioassay, we investigate the preference of D. suzukii for strains of AAB, and using solid-phase microextraction gas chromatography–mass spectrometry we specifically characterize their volatile profiles to identify attractive and non-attractive components produced by strains from the genera Acetobacter, Gluconobacter, and Komagataeibacter. Flies had a preference for one strain of Komagataeibacter and two strains of Gluconobacter. Analyses of the volatile profiles from the preferred Gluconobacter isolates found that acetic acid is distinctively emitted even after 2 days of bacterial growth, confirming the relevance of this volatile in the profile of this isolate for attracting flies. Analyses of the volatile profile from the preferred Komagataeibacter isolate showed that a different volatile in its profile could be responsible for attracting D. suzukii. Moreover, variation in the concentration of butyric acid derivatives found in some strains may influence the preference of D. suzukii. Our results indicate that Gluconobacter and Komagataeibacter strains isolated from D. suzukii have the potential to provide substances that could be exploited to develop sustainable mass-trapping-based control approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abraham J, Zhang A, Angeli S, Abubeker S, Michel C, Feng Y, Rodriguez-Saona C (2015) Behavioral and antennal responses of Drosophila suzukii (Diptera: Drosophilidae) to volatiles from fruit extracts. Environ Entomol 44:356–367

    Article  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  CAS  PubMed  Google Scholar 

  • Asplen MK, Anfora G, Biondi A, Choi D-S, Chu D, Daane KM, Gibert P, Gutierrez AP, Hoelmer KA, Hutchison WD, Isaacs R, Jiang Z-L, Kárpáti Z, Kimura MT, Pascual M, Philips CR, Plantamp C, Ponti L, Vétek G, Vogt H, Walton VM, Yu Y, Zappalà L, Desneux N (2015) Invasion biology of spotted wing Drosophila (Drosophila suzukii): a global perspective and future priorities. J Pest Sci 88:469–494

    Article  Google Scholar 

  • Bartowsky EJ, Xia D, Gibson RL, Fleet GH, Henschke PA (2003) Spoilage of bottled red wine by acetic acid bacteria. Lett Appl Microbiol 36:307–314

    Article  CAS  PubMed  Google Scholar 

  • Burrack HJ, Asplen M, Bahder L, Collins J, Drummond FA, Guédot C, Isaacs R, Johnson D, Blanton A, Lee JC, Loeb G, Rodriguez-Saona C, van Timmeren S, Walsh D, McPhie DR (2015) Multistate comparison of attractants for monitoring Drosophila suzukii (Diptera: Drosophilidae) in blueberries and cane berries. Environ Entomol 44(3):704–712

    Article  PubMed  Google Scholar 

  • Cha DH, Adams T, Rogg H, Landolt PJ (2012) Identification and field evaluation of fermentation volatiles from wine and vinegar that mediate attraction of Spotted Wing Drosophila, Drosophila suzukii. J Chem Ecol 38:1419–1431

    Article  CAS  PubMed  Google Scholar 

  • Cha DH, Hesler SP, Cowles RS, Voght H, Loeb GM, Landolt PJ (2013) Comparison of a synthetic chemical lure and standard fermented baits for trapping Drosophila suzukii (Diptera: Drosophilidae). Environ Entomol 42:1052–1060

    Article  PubMed  Google Scholar 

  • Cha DH, Adams T, Werle CT, Sampson BJ, Adamczyk JJ, Rogg H, Landolt PJ (2014) A four-component synthetic attractant for Drosophila suzukii (Diptera: Drosophilidae) isolated from fermented bait headspace. Pest Manag Sci 70:324–331

    Article  CAS  PubMed  Google Scholar 

  • Cha DH, Hesler SP, Park S, Adams TB, Zack RS, Rogg H, Loeb GM, Landolt PJ (2015) Simpler is better: fewer non-target insects trapped with a four-component chemical lure vs. a chemically more complex food-type bait for Drosophila suzukii. Entomol Exp Appl 154:251–260

    Article  Google Scholar 

  • Chandler JA, Lang JM, Bhatnagar S, Eisen JA, Kopp A (2011) Bacterial communities of diverse Drosophila species: ecological context of a host–microbe model system. PLoS Genet 7:e1002272. doi:10.1371/journal.pgen.1002272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandler JA, James PM, Jospin G, Lang JM (2014) The bacterial communities of Drosophila suzukii collected from undamaged cherries. PeerJ 2:e474. doi:10.7717/peerj.474

    Article  PubMed  PubMed Central  Google Scholar 

  • Chouaia B, Rossi P, Epis S, Mosca M, Ricci I, Damiani C, Ulissi U, Crotti E, Daffonchio D, Bandi C, Favia G (2012) Delayed larval development in Anopheles mosquitos deprived of Asaia bacterial symbionts. BMC Microbiol 12:S2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox CR, Gilmore MS (2007) Native microbial colonization of Drosophila melanogaster and its use as a model of Enterococcus faecalis pathogenesis. Infect Immun 75:1565–1576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crotti E, Rizzi A, Chouaia B, Ricci I, Favia G, Alma A, Sacchi L, Bourtzis K, Mandrioli M, Cherif A (2010) Acetic acid bacteria, newly emerging symbionts of insects. Appl Environ Microbiol 76:6963–6970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crotti E, Gonella E, Ricci I, Clementi E, Mandrioli M, Sacchi L, Favia G, Alma A, Bourtzis K, Cherif A, Bandi C, Daffonchio D (2011) Secondary symbionts of insects: acetic acid bacteria. In: Zcori-Fein E, Bourtzis K (eds) Manipulative tenants: bacteria associated with arthropods. CRC Press Taylor & Francis Group, Boca Raton, pp 45–72

    Google Scholar 

  • Davis TS, Crippen TL, Hofstetter RW, Tomberlin JK (2013) Microbial volatile emissions as insect semiochemicals. J Chem Ecol 39:840–859

    Article  CAS  PubMed  Google Scholar 

  • Devineni AV, Heberlein U (2009) Preferential ethanol consumption in Drosophila models features of addiction. Curr Biol 19:2126–2132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • du Toit M, Pretorius IS (2000) Microbial spoilage and preservation of wine: using weapons from nature’s own arsenal—a review. S Afr J Enol Vitic 41:48–56

    Google Scholar 

  • Elamrani A, David JR, Idaomar M (2001) Parallel changes in enzyme activity and oviposition behavior in adults of Drosophila melanogaster submitted to alcohols, acetaldehyde or acetone. Invertebr Reprod Dev 40:17–25

    Article  CAS  Google Scholar 

  • Frago E, Dicke M, Godfray HCJ (2012) Insects symbionts as hidden players in insect-plant interactions. Trends Ecol Evol 27:705–711

    Article  PubMed  Google Scholar 

  • Hauser M (2011) A historic account of the invasion of Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) in the continental United States, with remarks on their identification. Pest Manag Sci 67:1352–1357

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann AA (1983) Bidirectional selection for olfactory response to acetaldehyde and ethanol in Drosophila melanogaster. Genet Sel Evol 15:501–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann AA (1985) Interspecific variation in the response of Drosophila to chemicals and fruit odours in a wind tunnel. Aust J Zool 33:451–460

    Article  Google Scholar 

  • Iglesias LE, Nyoike TW, Liburd OE (2014) Effect of trap design, bait type, and age on captures of Drosophila suzukii (Diptera: Drosophilidae) in berry crops. J Econ Entomol 107:1508–1518

    Article  PubMed  Google Scholar 

  • Jang EB, Nishijima KA (1990) Identification and attractancy of bacteria associated with Dacus dorsalis (Diptera: Tephritidae). Environ Entomol 19:1726–1731

    Article  Google Scholar 

  • Kim E-K, Kim S-H, Nam H-J, Choi MK, Lee K-A, Choi S-H, Seo YY, You H, Kim B, Lee W-J (2012) Draft genome sequence of Gluconobacter morbifer G707T, a pathogenic gut bacterium isolated from Drosophila melanogaster intestine. J Bacteriol 194:1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landolt PJ, Adams T, Rogg H (2012) Trapping spotted wing drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), with combinations of vinegar and wine, and acetic acid and ethanol. J Appl Entomol 136:148–154

    Article  CAS  Google Scholar 

  • Larkin A, Karak S, Priya S, Das A, Ayyub C, Ito K, Rodrigues V, Ramaswami M (2010) Central synaptic mechanisms underlie short-term olfactory habituation in Drosophila larvae. Learn Memory 17:645–653

    Article  CAS  Google Scholar 

  • Lavagnino NJ, Arya GH, Korovaichuk A, Fanara JJ (2013) Genetic architecture of olfactory behavior in Drosophila melanogaster: differences and similarities across development. Behav Genet 43:348–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liscia A, Angioni P, Sacchetti P, Poddighe S, Granchietti A, Setzu MD, Belcari A (2013) Characterization of olfactory sensilla of the olive fly: behavioral and electrophysiological responses to volatile organic compounds from the host plant and bacterial filtrate. J Insect Physiol 59:705–716

    Article  CAS  PubMed  Google Scholar 

  • Mapelli F, Marasco R, Rolli E, Barbato M, Cherif H, Guesmi A, Ouzari I, Daffonchio D, Borin S (2013) Potential for plant growth promotion of rhizobacteria associated with Salicornia growing in Tunisian hypersaline soils. Bio Med Res Int. doi:10.1155/2013/248078

    Google Scholar 

  • Mazzetto F, Pansa MG, Ingegno BL, Tavella L, Alma A (2015) Monitoring of the exotic fly Drosophila suzukii in stone, pome and soft fruit orchards in NW Italy. J Asia Pac Entomol 18:321–329

    Article  Google Scholar 

  • Newby BD, Etges WJ (1998) Host preference among populations of Drosophila mojavensis (Diptera: Drosophilidae) that use different host cacti. J Insect Behav 11:691–712

    Article  Google Scholar 

  • NIST (2015) http://webbook.nist.gov/chemistry/. Accessed September 21 2015

  • Raspor P, Goranovič D (2008) Biotechnological applications of acetic acid bacteria. Crit Rev Biotechnol 28:101–124

    Article  CAS  PubMed  Google Scholar 

  • Reed MR (1938) The olfactory reactions of Drosophila melanogaster Meigen to the products of fermenting banana. Physiol Zool 11:317–325

    Article  Google Scholar 

  • Ren C, Webster P, Finkel SE, Tower J (2007) Increased internal and external bacterial load during Drosophila aging without life-span trade-off. Cell Metab 6:144–152

    Article  CAS  PubMed  Google Scholar 

  • Riveron J, Boto T, Alcorta E (2009) The effect of environmental temperature on olfactory perception in Drosophila melanogaster. J Insect Physiol 55:943–951

    Article  CAS  PubMed  Google Scholar 

  • Robacker DC, Martinez AJ, Garcia JA, Bartelt RJ (1998) Volatiles attractive to the Mexican Fruit Fly (Diptera: Tephritidae) from eleven bacteria taxa. Fla Entomol 81:497–508

    Article  CAS  Google Scholar 

  • Rodrigues V, Siddiqi O (1978) Genetic analysis of chemosensory pathway. P Indian Acad Sci B 87:147–160

    Google Scholar 

  • Roh SW, Nam Y-D, Chang H-W, Kim K-H, Kim M-S, Ryu J-H, Kim S-H, Lee W-J, Bae J-W (2008) Phylogenetic characterization of two novel commensal bacteria involved with innate immune homeostasis in Drosophila melanogaster. Appl Environ Microbiol 74:6171–6177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rohrbach KG, Pfeiffer JB (1975) The interaction of four bacteria causing pink disease of pineapple with several pineapple cultivars. Phytopathol 66:396–399

    Article  Google Scholar 

  • Ryu J-H, Kim S-H, Lee H-Y, Bai J-Y, Nam Y-D, Bae J-W, Lee DG, Shin SC, Ha E-M, Lee W-J (2008) Innate immune homeostasis by the homeobox gene Caudal and commensal-gut mutualism in Drosophila. Science 319:777–782

    Article  CAS  PubMed  Google Scholar 

  • Saichana N, Matsushita K, Adachi O, Frébort I, Frebortova J (2015) Acetic acid bacteria: a group of bacteria with versatile biotechnological applications. Biotechnol Adv 33(6):1260–1271

    Article  CAS  PubMed  Google Scholar 

  • Scheidler NH, Liu C, Hamby KA, Zalom FG, Syed Z (2015) Volatile codes: correlation of olfactory signals and reception in Drosophila-yeast chemical communication. Sci Rep 5:14059. doi:10.1038/srep14059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin SC, Kim S-H, You H, Kim B, Kim AC, Lee K-A, Yoon J-H, Ryu J-H, Lee W-J (2011) Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science 334:670–674

    Article  CAS  PubMed  Google Scholar 

  • Staubach F, Baines JF, Künzel F, Bik EM, Petrov DA (2013) Host species and environmental effects on bacterial communities associated with Drosophila in the laboratory and in the natural environment. PloS One. doi:10.1371/journal.pone.0070749

    Google Scholar 

  • van Keer C, Vanden Abeele P, Swings J, Gossele F, De Lay J (1981) Acetic acid bacteria as causal agents of browning and rot of apples and pears. Zentralblatt für Bakteriologie: I. Abt Originale C: Allgemeine, angewandte und ökologische Mikrobiologie 2:197–204

    Google Scholar 

  • van Kranenburg R, Kleerebezem M, van Hylckama Vlieg J, Ursing BM, Boekhorst J, Smit BA, Ayad EHE, Smit G, Siezen RJ (2002) Flavour formation from amino acids by lactic acid bacteria: predictions from genome sequence analysis. Int Dairy J 12:111–121

    Article  Google Scholar 

  • West AS (1961) Chemical attractants for adult Drosophila species. J Econ Entomol 54:677–681

    Article  Google Scholar 

  • Wong AC-N, Ng P, Douglas AE (2011) Low diversity bacterial community in the gut of the fruit fly Drosophila melanogaster. Environ Microbiol 13:1889–1900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong AC-N, Chaston JM, Douglas AE (2013) The inconstant gut microbiota of Drosophila species revealed by 16S rRNA gene analysis. ISME J 7:1922–1932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vacchini V, Gonella E, Crotti E, Prosdocimi EM, Mazzetto F, Chouaia B, Callegari M, Mapelli F, Mandrioli M, Alma A, Daffonchio D Diversity and gut localization of the acetic acid bacterial microbiome in the spotted wing fly, Drosophila suzukii. Appl Environ Microbiol (Submitted)

Download references

Acknowledgments

The authors are grateful to Enrico Busato and Marco Pansa for insect rearing and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Alma.

Additional information

Communicated by A. Biondi.

Special Issue: Spotted Wing Drosophila.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazzetto, F., Gonella, E., Crotti, E. et al. Olfactory attraction of Drosophila suzukii by symbiotic acetic acid bacteria. J Pest Sci 89, 783–792 (2016). https://doi.org/10.1007/s10340-016-0754-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-016-0754-7

Keywords

Navigation