Skip to main content
Log in

Identification of the antifungal compound, trans-cinnamic acid, produced by Photorhabdus luminescens, a potential biopesticide against pecan scab

  • Original Paper
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

Pecan scab (caused by Fusicladium effusum) limits the productivity of pecan in the southeastern USA. Alternatives to conventional fungicides should be biorational, of low environmental risk with a lower risk of fungicide resistance. Research showed that metabolites from the nematode symbiont Photorhabdus luminescens suppress pecan scab, but the bioactive molecules had not been identified. Extracts from P. luminescens were investigated using a bioactivity-directed fractionation approach to identify the constituent(s) responsible for the activity. High throughput antifungal bioautography assays against Colletotrichum gloeosporioides, C. fragariae, and C. acutatum were used to guide the fractionation. One of the metabolites was purified and identified as trans-cinnamic acid (TCA) using silica gel chromatography followed by semi-preparative high-performance liquid chromatography. In vitro tests confirmed toxicity of TCA to C. gloeosporioides, C. fragariae, and C. acutatum at 10 and 100 μg mL−1 using fungal bioautography inhibition screening plates. The antimycotic activity of TCA was tested in vitro against F. effusum. Zone of inhibition tests, and tests with TCA incorporated into agar showed TCA toxicity to F. effusum at concentration 148–200+ μg mL−1. Further tests incorporating TCA into liquid media demonstrated that TCA arrested all growth of F. effusum at a concentration even as low as 64 μg mL−1. Naturally occurring antimicrobial products might offer an alternative to disease control in crops, helping in minimizing the risk of fungicide resistance, while also minimizing any negative impact on the environment. Additional research is warranted to determine the potential to use TCA as a suppressive agent for pecan scab and other diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acero-Ortega C, Dorantes-Alvarez L, Jaramillo-Flores ME, Hernandez-Sanchez H, Lopez-Malo A (2003) Effect of Chilli (Capsicum annum L.) extracts and derived compounds on growth of Erwinia carotovora subsp. carotovora (Jones) Bergey, Harrison, Breed Hammer and Huntoon. Rev Mex Fitopatol 21:233–236

    Google Scholar 

  • Akhurst RJ (1982) Antibiotic activity of Xenorhabdus spp., bacteria symbiotically associated with insect pathogenic nematodes of the families Heterorhabditidae and Steinernematidae. J Gen Microbiol 128:3061–3065

    CAS  PubMed  Google Scholar 

  • Azevedo MM, Cassio F (2010) Effects of metals on growth and sporulation of aquatic fungi. Drug Chem Toxicol 33:269–278

    Article  CAS  PubMed  Google Scholar 

  • Boeszoermenyi E, Ersek T, Fodor A, Fodor AM, Foeldes LSz, Hevesi M, Hogan JS, Katona Z, Klein MG, Kormany A, Pekar S, Szentirmai A, Sztaricskai F, Taylor RAJ (2009) Isolation and activity of Xenorhabdus antimicrobial compounds against the plant pathogens Erwinia amylovora and Phytophthora nicotianae. J Appl Microbiol 107:746–759

    Article  Google Scholar 

  • Brenneman TB, Bertrand PF, Mullinix B (1998) Spray advisories for pecan scab: recent developments in Georgia. In: The pecan industry: current situation and future challenges, 3rd national pecan workshop proceedings, pp 7–13

  • Chalabaev S, Turlin E, Bay S, Ganneau C, Brito-Fravallo E, Charles J-F, Danchin A, Biville F (2008) Cinnamic acid, an autoinducer of its own biosynthesis, is processed via hca enzymes in Photorhabdus luminescens. Appl Environ Microbiol 74:1717–1725

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen G, Dunphy G, Webster J (1994) Antifungal activity of two Xenorhabdus species and Photorhabdus luminescens bacteria associated with the nematodes Steinernema species and Heterorhabditis megidis. Biol Control 4:157–162

    Article  Google Scholar 

  • Chen YL, Huang ST, Sun FM, Chiang YL, Chiang CJ, Tsai CM, Weng CJ (2011) Transformation of cinnamic acid from trans- to cis-form raises a notable bactericidal and synergistic activity against multiple-drug resistant Mycobacterium tuberculosis. Eur J Pharm Sci 43:188–194

    Article  CAS  PubMed  Google Scholar 

  • Cole RJ, Gossard AC (1956) Stuart pecan found to be susceptible to scab in Mississippi. Plant Dis Rep 40:156

    Google Scholar 

  • Eleftherianos I, Boundy S, Joyce S, Aslam S, Marshall J, Cox R, Simpson T, Clarke D, French-Constant R, Reynolds S (2007) An antibiotic produced by an insect-pathogenic bacterium suppresses host defenses through phenoloxidase inhibition. Proc Natl Acad Sci USA 104:2419–2424

    Article  CAS  PubMed  Google Scholar 

  • Espinel-Ingroff A, Kerkering TM (1991) Spectrophotometric method of inoculum preparation for the in vitro susceptibility testing of filamentous fungi. J Clin Microbiol 29:393–394

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fang XL, Li ZZ, Wang YH, Zhang X (2011) In vitro and in vivo antimicrobial activity of Xenorhabdus bovienii YL002 against Phytophthora capsici and Botrytis cinerea. J Appl Microbiol 111:145–154

    Article  CAS  PubMed  Google Scholar 

  • Gaugler R (ed) (2002) Entomopathogenic nematology. CABI Publishing, Wallingford

    Google Scholar 

  • Goff WD, McVay JR, Gazaway WS (1996) Pecan production in the southeast. Alabama Cooperative Extension System Circular ANR-459, University, Auburn, p 222

  • Grewal PS, Ehlers R-U, Shapiro-Ilan DI (eds) (2005) Nematodes as biocontrol agents. CABI Publishing, Wallingford

    Google Scholar 

  • Hakkim FL, Mathiraj, Essa MM, Arivazhagan G, Guizani N, Song H (2012) Evaluation of food protective property of five natural products using fresh-cut apple slice model. Pak J Biol Sci 15:10–18

    Article  PubMed  Google Scholar 

  • Homans AL, Fuchs A (1970) Direct bioautography on thin-layer chromatograms as a method for detecting fungitoxic substances. J Chromatogr 51(2):327–329

    Article  CAS  PubMed  Google Scholar 

  • Isaacson PJ, Webster JM (2002) Antimicrobial activity of Xenorhabdus sp. Rio Enterobacteriaceae) symbiont of the entomopathogenic nematode Steinernema riobrave (Rhabditidae: Steinernematidae). J Invertebr Pathol 79:146–153

    Article  CAS  PubMed  Google Scholar 

  • Kaya HK, Gaugler R (1993) Entomopathogenic nematodes. Annu Rev Entomol 38:181–206

    Article  Google Scholar 

  • Kaya HK, Stock SP (1997) Techniques in nematology. In: Lacey LA (ed) Manual of techniques in insect pathology. Academic Press, San Diego, pp 281–324

    Chapter  Google Scholar 

  • Li J, Chen G, Webster JM (1995) Antimicrobial metabolites from a bacterial symbiont. J Nat Prod 58:1081–1086

    Article  CAS  PubMed  Google Scholar 

  • McInerney BV, Gregson RP, Lacey MJ, Akhurst RJ, Lyons GR, Rhodes SH, Smith DR, Engelhardt LM, White AH (1991) Biologically active metabolites from Xenorhabdus spp. Part 1. Dithiolopyrrolone derivatives with antibiotic activity. J Nat Prod 54:774–784

    Article  CAS  PubMed  Google Scholar 

  • Métraux J-P (2002) Recent breakthroughs in the study of salicylic acid biosynthesis. Trends Plant Sci 7:332–334

    Article  PubMed  Google Scholar 

  • Moore RE (1996) Cyclic peptides and depsipeptides from cyanobacteria: a review. J Ind Microbiol 16:134–143

    Article  CAS  PubMed  Google Scholar 

  • National Research Council (1989) Alternative agriculture. National Academy Press, Washington, DC

    Google Scholar 

  • Ng KK, Webster JM (1997) Antimycotic activity of Xenorhabdus bovienii (Enterobacteriaceae) metabolites against Phytophthora infestans on potato plants. Can J Plant Pathol 19:125–132

    Article  CAS  Google Scholar 

  • Paul VJ, Frautschy S, Fenical W, Nealson KH (1981) Antibiotics in microbial ecology. J Chem Ecol 7:589–597

    Article  CAS  PubMed  Google Scholar 

  • Reynolds KL, Brenneman TB, Bertrand PF (1997) Sensitivity of Cladosporium caryigenum to propiconazole and febuconazole. Plant Dis 81:163–166

    Article  CAS  Google Scholar 

  • San-Blas E, Carrillo Z, Parra Y (2012) Effect of Xenorhabdus and Photorhabdus bacteria and their exudates on Moniliophthora roreri. Arch Phytopathol Plant Prot 45:1950–1967

    Article  Google Scholar 

  • Seyran M, Brenneman TB, Stevenson KL (2010) A rapid method to monitor fungicide sensitivity in the pecan scab pathogen, Fusicladium effusum. Crop Prot 29:1257–1263

    Article  CAS  Google Scholar 

  • Shapiro-Ilan DI, Reilly CC, Hotchkiss MW (2009) Suppressive effects of metabolites from Photorhabdus and Xenorhabdus spp. on phytopathogens of peach and pecan. Arch Phytopathol Plant Prot 42:715–728

    Article  CAS  Google Scholar 

  • Shreaz S, Sheikh RA, Bhatia R, Neelofar K, Imran S, Hashmi AA, Manzoor N, Basir SF, Khan LA (2011) Antifungal activity of a-methyl transcinnamaldehyde, its ligand and metal complexes: promising growth and ergosterol inhibitors. Biometals 24:923–933

    Article  CAS  PubMed  Google Scholar 

  • Si W, Gong J, Tsao R, Zhou T, Yu H, Poppe C, Johnson R, Du Z (2006) Antimicrobial activity of essential oils and structurally related synthetic food additives towards selected pathogenic and beneficial gut bacteria. J Appl Microbiol 100:296–305

    Article  CAS  PubMed  Google Scholar 

  • Stevenson KL (1999) Fungicide resistance management in pecans. In: McCraw BE, Dean EH, Wood BW (eds) The pecan industry: current situation and future challenges, third national pecan workshop proceedings, USDA Agricultural Research Service, 1998–2004, pp 1–6

  • Sun W-J, Nie Y-X, Gao Y, Dai A-H, Bai J-G (2012) Exogenous cinnamic acid regulates antioxidant enzyme activity and reduces lipid peroxidation in drought stressed cucumber. Acta Physiol Plant 34:641–655

    Article  CAS  Google Scholar 

  • Tellez MR, Dayan FE, Schrader KK, Wedge DE, Duke SO (2000) Composition and some biological activities of the essential oil of Callicarpa americana (L.). J Agric Food Chem 48:3008–3012

    Article  CAS  PubMed  Google Scholar 

  • Teviotdale BL, Michailides TJ, Pscheidt JW (eds) (2002) Compendium of nut crop diseases in temperate zones. The American Phytopathological Society, St. Paul

    Google Scholar 

  • Vincent A, Dayan FE, Maas JL, Wedge DE (1999) Detection and isolation of antifungal compounds in strawberry inhibitory to Colletotrichum fragariae. Adv Strawb Res 18:28–36

    Google Scholar 

  • Webster JM, Chen G, Li J (1995) Novel fungicidal properties of metabolites, culture broth, stilbene derivatives and indole derivatives produced by the bacteria Xenorhabdus and Photorhabdus spp. Patent no. WO9503695

  • Webster JM, Chen G, Hu K, Li J (2002) Bacterial metabolites. In: Gaugler R (ed) Entomopathogenic nematology. CABI Publishing, Wallingford, pp 99–114

    Chapter  Google Scholar 

  • Wedge DE, Kuhajek JM (1998) A microbioassay for fungicide discovery. SAAS Bull Biochem Biotechnol 11:1–7

    CAS  Google Scholar 

  • Wedge DE, Nagle DG (2000) A new 2D-TLC bioautography method for the discovery of novel antifungal agents to control plant pathogens. J Nat Prod 63:1050–1054

    Article  CAS  PubMed  Google Scholar 

  • Williams JS, Thomas M, Clarke DJ (2005) The gene stlA encodes a phenylalanine ammonia-lyase that is involved in the production of a stilbene antibiotic in Photorhabdus luminescens TT01. Microbiology 151:2543–2550

    Article  CAS  PubMed  Google Scholar 

  • Wong SY, Grant IR, Friedman M, Elliott CT, Situ C (2008) Antibacterial activities of naturally occurring compounds against Mycobacterium avium subsp. paratuberculosis. Appl Environ Microbiol 74:5986–5990

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ye SF, Yu JQ, Peng YH, Zheng JH, Zou LY (2004) Incidence of Fusarium wilt in Cucumis sativus L. is promoted by cinnamic acid, an autotoxin in root exudates. Plant Soil 263:143–150

    Article  CAS  Google Scholar 

  • Ye SF, Zhou YH, Sun Y, Zou LY, Yu JQ (2006) Cinnamic acid causes oxidative stress in cucumber roots, and promotes incidence of Fusarium wilt. Environ Exp Bot 56:255–262

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors appreciate the technical assistance of Stacy Byrd, Kathy Halat, Jatayah Sheed, Stephanie de Vos, and Peir Wangnar, with regard to helping with the assays and recording data. The authors thank the Georgia Agricultural Commodity Commission for the partial funding of the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clive H. Bock.

Additional information

Communicated by M. Brownbridge

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bock, C.H., Shapiro-Ilan, D.I., Wedge, D.E. et al. Identification of the antifungal compound, trans-cinnamic acid, produced by Photorhabdus luminescens, a potential biopesticide against pecan scab. J Pest Sci 87, 155–162 (2014). https://doi.org/10.1007/s10340-013-0519-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-013-0519-5

Keywords

Navigation