Skip to main content

Advertisement

Log in

Interaction of spittlebug and forage grass under different carbon dioxide concentrations

  • Original Paper
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

This study evaluated the impact of different CO2 levels on the biological characteristics of Mahanarva spectabilis (Distant) and on the performance of forage grasses. The signal grasses Brachiaria decumbens Stapf (susceptible) and Brachiaria brizantha (A. Rich.) (resistant), the elephant grass Pennisetum purpureum (Schum.), including the Roxo de Botucatu cultivar (susceptible) and the Pioneiro cultivar (resistant) and the insects were kept in climate-controlled chambers with constant low (250 ppm) CO2 levels, constant high (500 ppm) CO2 levels, or fluctuating CO2 levels (mean, 368 ppm). Among these three CO2 treatments, no significant differences were found in the nymphal survival of M. spectabilis when the nymphs were fed on two signal grass species. On the other hand, under a constant low CO2 level (250 ppm), nymphal survival rates were significantly lower when the insects were kept in Roxo de Botucatu and Pioneiro cultivars. The mean adult longevity values for M. spectabilis were not significantly different among the three levels of CO2 evaluated. We observed that increased CO2 levels improved the performance of M. spectabilis and elephant grass cultivars in accumulating dry mass, which was not evident in signal grass. We further conclude that the levels of susceptibility and resistance of the forages tested will be maintained in future scenarios under which atmospheric CO2 levels are expected to increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist 165:351–372

    Article  PubMed  Google Scholar 

  • Approbato A U (2008) Impacto de elevadas concentrações de CO2 e da nutrição do solo sobre a fisiologia e crescimento inicial de Esenbeckia leiocarpa Engl., numa simulação climática futura. Dissertação de Mestrado, Universidade de São Paulo, Ribeirão Preto

  • Auad AM, Simões AD, Pereira AV, Braga ALF, Souza Sobrinho F, Lédo JFS, Oliveira SA, Ferreira RB (2007) Seleção de genótipos de capim-elefante quanto à resistência à cigarrinha-das-pastagens. Pesq Agrop Bras 42:1077–1081

    Article  Google Scholar 

  • Barbehennr V (2005) Grasshoppers efficiently process C4 grass leaf tissues: implications for patterns of host-plant utilization. Entomol Exp Appl 116:209–217

    Article  Google Scholar 

  • Bezemer TM, Jones TH, Knight KJ (1998) Long-term effects of elevated CO2 and temperature on populations of the peach potato aphid Myzus perscicae and its parasitoid Aphidius matricariae. Oecologia 116:128–135

    Article  Google Scholar 

  • Brooks GL, Whittaker JB (1999) Responses of three generations of a xylem-feeding insect, Neophilaenus lineatus (Homoptera), to elevated CO2. Glob Change Biol 5:395–401

    Article  Google Scholar 

  • Buckeridge MS, Aidar MPM, Emerson AS, Martinez CA (2008) Respostas de plantas às mudanças climáticas globais. In: Buckeridge MS (ed) Biologia and mudanças climáticas no Brasil. RiMa, São Carlos, pp 77–91

  • Cardona C, Fory P, Sotelo G, Pabon A, Diaz G, Miles JW (2004) Antibiosis and tolerance to five species of spittlebug (Homoptera: Cercopidae) in Brachiaria spp.: implications for breeding for resitance. J Econ Entomol 97:635–645

    Article  PubMed  Google Scholar 

  • Chen FJ, Wu G, Ge F (2004) Impacts of elevated CO2 on the population abundance and reproductive activity of aphid Sitobion avenae Fabricius feeding on spring wheat. J Appl Entomol 128:723–730

    Article  Google Scholar 

  • Chen F, Ge F, Parajulee MN (2005) Impact of elevated CO2 on tri-trophic interaction of Gossypium hirsutum, Aphis gossypii, and Leis axyridis. Environ Entomol 34:37–46

    Article  Google Scholar 

  • Chen FJ, Wu G, Parajulee MN, Ge F (2007) Long-term impacts of elevated carbon dioxide and transgenic Bt cotton on performance and feeding of three generations of cotton bollworm. Entomol Exp Appl 124:27–35

    Article  Google Scholar 

  • Coviella CE, Stipanovic RD, Trumble JT (2002) Plant allocation to defensive compounds, interactions between elevated CO2 and nitrogen in transgenic cotton plants. J Exp Bot 53:323–331

    Article  PubMed  CAS  Google Scholar 

  • Dermody O, O’Neill BF, Zangerl AR, Berenbaum MR, DeLucia EH (2008) Effects of elevated CO2 and O3 on leaf damage and insect abundance in a soybean agroecosystem. Arthropod Plant Interact 2:125–135

    Article  Google Scholar 

  • Flynn DFB, Sudderth EA, Bazzaz FA (2006) Effects of aphid herbivory on biomass and leaf-level physiology of Solanum dulcamara under elevated temperature and CO2. Environ Expt Bot 56:10–18

    Article  CAS  Google Scholar 

  • Fu X, Ye L, Kang L, Ge F (2010) Elevated CO2 shifts the focus of tobacco plant defenses from cucumber mosaic virus to the green peach aphid. Plant Cell Environ 33:2056–2064

    Article  PubMed  CAS  Google Scholar 

  • Garcia JF (2006) Bioecologia e manejo da cigarrinha-das-raízes, Mahanarva fimbriolata (Stal, 1854) (Hemiptera: Cercopidae) em cana-de-açúcar. P. 99 Tese (Doutorado em Entomologia)–Escola Superior de Agricultura “Luiz de Queiroz”

  • Ghini R, Hamada E, Bettiol W (2008) Climate change and plant diseases. Scientia Agrícola 65:98–107

    Article  Google Scholar 

  • Hattenschwiler S, Schafellner C (2004) Gypsy moth feeding in the canopy of a CO2-enriched mature forest. Glob Change Biol 10:1899–1908

    Article  Google Scholar 

  • Hillstrom ML, Vigue LM, Coyle DR, Raffa KF, Lindroth RL (2010) Performance of the invasive weevil Polydrusus sericeus is influenced by atmospheric CO2 and host species. Agric Fort Entomol 12:285–292

    Google Scholar 

  • Hughes L, Bazzaz FA (2001) Effects of elevated CO2 on five plant-aphid interactions. Entomol Exp Appl 99:87–96

    Article  Google Scholar 

  • Hunter MD (2001) Effects of elevated atmospheric carbon dioxide on insect-plant interactions. Agric For Entomol 3:153–159

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007, the physical science basis. Summary for policy makers

  • Knepp RG, Hamilton JG, Mohan JE, Zangerl AR, Barenhaum MR, DeLucia EH (2005) Elevated CO2 reduces leaf damage by insect herbivores in a forest community. New Phytol 167:207–218

    Article  PubMed  CAS  Google Scholar 

  • Larcher W (2006) Ecofisiologia vegetal. RiMa, São Carlos, p 531

  • Martin P, Johnson SN (2011) Evidence that elevated CO2 reduces resistance to the European large raspberry aphid in some raspberry cultivars. J Appl Entomol 135:237–240

    Google Scholar 

  • Mondor EB, Awmack CS, Lindroth RL (2010) Individual growth rates do not predict aphid population densities under altered atmospheric conditions. Agric For Entomol 12:293–299

    Google Scholar 

  • Newman JA, Gibson DJ, Parsons AJ, Thornley JHM (2003) How predictable are aphid population responses to elevated CO2? J Animal Ecol 72:556–566

    Article  Google Scholar 

  • Nowak RS, Ellsworth DS, Smith SD (2004) Functional responses of plants to elevated atmospheric CO2—do photosynthetic and productivity data from FACE experiments support early predictions? New Phytol 162:253–280

    Article  Google Scholar 

  • O’Neill BF, Zangerl AR, Dermody O, Bilgin DD, Casteel CL, Zavala JA, Delucia EH, Berenbaum MR (2010) Impact of elevated levels of atmospheric CO2 and herbivory on flavonoids of soybean (Glycine max Linnaeus). J Chem Ecol 36:35–45

    Article  PubMed  Google Scholar 

  • Pabón A, Cardona C, Miles JW, Sotelo G (2007) Response of resistant and susceptible Brachiaria spp. genotypes to simultaneous infestation with multiple species of spittlebugs (Hemiptera: Cercopidae). J Econ Entomol 100:1896–1903

    Article  PubMed  Google Scholar 

  • Pacheco MRPS, Helene MEM (1990) Atmosfera, fluxos de carbono e fertilização por CO2. Estudos Avançados 4:204–220

    Article  Google Scholar 

  • Rabinovitch L, Cavados CFG, Lima MMO (1998) controle biológico de insetos nocivos a agricultura com o emprego de fungos imperfeitos ou hifomicetos. Biotecnologia, Ciência e Desenvolvimento 2:10–12

    Google Scholar 

  • Simões AD (2009) Impacto da fotofase na biologia de Mahanarva fimbriolata (Stal, 1854) Hemiptera: Cercopidae) Dissertação, Mestrado em Entomologia–Universidade Federal de Viçosa, Brasil

  • Souza JC, Silva RA, Reis PR, Queiroz DS, Silva DB (2008) Cigarrinhas-das-pastagens: histórico, bioecologia, prejuízos, monitoramento e medidas de controle. EPAMIG p 8

  • Stacey DA, Fellowes MDE (2002) Influence of elevated CO2 on interspecific interactions at higher trophic levels. Glob Change Biol 8:668–678

    Article  Google Scholar 

  • Theurillat JP, Guisan A (2001) Potential impact of climate change on vegetation in the European Alps: a review. Clim Change 50:77–109

    Article  CAS  Google Scholar 

  • Valério JR (2005) Insetos-praga em pastagens tropicais. Informe Agropecuário 26:226–2005

    Google Scholar 

  • Valério JR, Nakano O (1988) Danos causados pelo adulto da cigarrinha Zulia entreriana na produção e qualidade de Brachiaria decumbens. Pesq Agropec Bras 23:447–453

    Google Scholar 

  • Wand SJE, Midgley GF, Jones MH, Curtis PS (1999) Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO2 concentration: a meta-analytic test of current theories and perceptions. Glob Change Biol 5:723–741

    Article  Google Scholar 

  • Wu G, Chen FJ, Ge F (2006) Responses of multiple generations of cotton bollworm Helicoverpa armigera Hübner, feeding on spring wheat, to elevated CO2. J Appl Entomol 130:2–9

    Article  Google Scholar 

  • Yin J, Yucheng S, Gang W, Feng G (2010) Effects of elevated CO2 associated with maize on multiple generations of the cotton bollworm, Helicoverpa armigera. Entomol Exp Appl 136:12–20

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil) and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG, Brazil) for supporting our research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander M. Auad.

Additional information

Communicated by A. Juen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferreira, R.B., Moraes, J.C., Auad, A.M. et al. Interaction of spittlebug and forage grass under different carbon dioxide concentrations. J Pest Sci 86, 161–166 (2013). https://doi.org/10.1007/s10340-012-0449-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-012-0449-7

Keywords

Navigation