Skip to main content

Advertisement

Log in

Model learning for robot control: a survey

  • Review
  • Published:
Cognitive Processing Aims and scope Submit manuscript

Abstract

Models are among the most essential tools in robotics, such as kinematics and dynamics models of the robot’s own body and controllable external objects. It is widely believed that intelligent mammals also rely on internal models in order to generate their actions. However, while classical robotics relies on manually generated models that are based on human insights into physics, future autonomous, cognitive robots need to be able to automatically generate models that are based on information which is extracted from the data streams accessible to the robot. In this paper, we survey the progress in model learning with a strong focus on robot control on a kinematic as well as dynamical level. Here, a model describes essential information about the behavior of the environment and the influence of an agent on this environment. In the context of model-based learning control, we view the model from three different perspectives. First, we need to study the different possible model learning architectures for robotics. Second, we discuss what kind of problems these architecture and the domain of robotics imply for the applicable learning methods. From this discussion, we deduce future directions of real-time learning algorithms. Third, we show where these scenarios have been used successfully in several case studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbeel P, Coates A, Quigley M, Ng AY (2007) An application of reinforcement learning to aerobatic helicopter flight. Adv Neural Inf Process Syst

  • Akaike H (1970) Autoregressive model fitting for control. Ann Inst Stat Math 23:163–180

    Article  Google Scholar 

  • Akesson BM, Toivonen HT (2006) A neural network model predictive controller. J Process Control 16(9):937–946

    Article  CAS  Google Scholar 

  • Angelova A, Matthies L, Helmick D, Perona P (2006) Slip prediction using visual information. In: Proceedings of robotics: science and systems, Philadelphia, USA, August 2006

  • Aström KJ, Wittenmark B (1995) Adaptive control. Addison Wesley, Boston

    Google Scholar 

  • Atkeson CG, An CH, Hollerbach JM (1986) Estimation of inertial parameters of manipulator loads and links. Int J Rob Res 5(3)

  • Atkeson CG, Moore AW, Schaal S (1997) Locally weighted learning. Artif Intell Rev 11(1–5):11–73

    Article  Google Scholar 

  • Atkeson CG, Moore AW, Schaal S (1997) Locally weighted learning for control. Artif Intell Rev 11(1–5):75–113

    Article  Google Scholar 

  • Atkeson CG, Morimoto J (2002) Nonparametric representation of policies and value functions: a trajectory-based approach. Adv Neural Inf Process Syst

  • Atkeson CG, Schaal S (1997) Robot learning from demonstration. In: Proceedings of the 14th international conference on machine learning

  • Ben-David S, Schuller R (2003) Exploiting task relatedness for multiple task learning. In: Proceedings of the conference on learning theory

  • Bhushan N, Shadmehr R (1999) Evidence for a forward dynamics model in human adaptive motor control. Adv Neural Inf Process Syst

  • Billings SS, Chen S, Korenberg G (1989) Identification of mimo nonlinear systems using a forward-regression orthogonal estimator. Int J Control 49:2157–2189

    Google Scholar 

  • Bongard J, Zykov V, Lipson H (2006) Resilient machines through continuous self-modeling. Science 314:1118–1121

    Article  Google Scholar 

  • Boots B, Siddiqi SM, Gordon GJ (2010) Closing the learning-planning loop with predictive state representations. Robot Sci Syst

    Google Scholar 

  • Bottou L, Chapelle O, DeCoste D, Weston J (2007) Large-scale kernel machines. MIT Press, Cambridge

    Google Scholar 

  • Burdet E, Sprenger B, Codourey A (1997) Experiments in nonlinear adaptive control. Int Conf Robot Autom 1:537–542

    Google Scholar 

  • Butz M, Herbort M, Hoffmann J (2007) Exploiting redundancy for flexible behavior: unsupervised learning in a modular sensorimotor control architecture. Psychol Rev 114(3):1015–1046

    Article  PubMed  Google Scholar 

  • Calinon S, D’halluin F, Sauser E, Caldwell D, Billard A (2010) A probabilistic approach based on dynamical systems to learn and reproduce gestures by imitation. IEEE Robot Autom Mag 17:44–54

    Article  Google Scholar 

  • Candela JQ, Rasmussen CE (2005) A unifying view of sparse approximate gaussian process regression. J Mach Learn Res

  • Candela JQ, Rasmussen CE, Williams CK (2007) Large scale kernel machines. MIT Press, Cambridge

    Google Scholar 

  • Cao H, Yin Y, Du D, Lin L, Gu W, Yang Z (2006) Neural network inverse dynamic online learning control on physical exoskeleton. 13th international conference on neural information processing

  • Chapelle O, Schölkopf B, Zien A (2006) Semi-supervised learning. MIT Press, Cambridge

    Google Scholar 

  • Choi Y, Cheong SY, Schweighofer N (2007) Local online support vector regression for learning control. In: Proceedings of the IEEE international symposium on computational intelligence in robotics and automation

  • Chow CM, Kuznetsov AG, Clarke DW (1998) Successive one-step-ahead predictions in multiple model predictive control. Int J Control 29:971–979

    Google Scholar 

  • Cleveland WS, Loader CL (1996) Smoothing by local regression: principles and methods. Stat Theory Comput Aspects Smooth

  • Cohn DA, Ghahramani Z, Jordan MI (1996) Active learning with statistical models. J Artif Intell Res 4:129–145

    Google Scholar 

  • Coito FJ, Lemos JM (1991) A long-range adaptive controller for robot manipulators. Int J Robot Res 10:684–707

    Article  Google Scholar 

  • Craig JJ (2004) Introduction to robotics: mechanics and control. Prentice Hall, New Jersey

    Google Scholar 

  • Csato L, Opper M (2002) Sparse online gaussian processes. Neural Comput

  • Dasgupta S (2004) Analysis of a greedy active learning strategy. Adv Neural Inf Process Syst

  • Demers D, Kreutz-Delgado K (1992) Learning global direct inverse kinematics. Adv Neural Inf Process Syst, strony 589–595

  • D’Souza A, Vijayakumar S, Schaal S (2001) Learning inverse kinematics. IEEE Int Conf Intell Robots Syst

  • Edakunni NU, Schaal S, Vijayakumar S (2007) Kernel carpentry for online regression using randomly varying coefficient model. In: Proceedings of the 20th international joint conference on artificial intelligence

  • Engel Y, Mannor S, Meir R (2002) Sparse online greedy support vector regression. Eur Conf Mach Learn

  • Fan J, Gijbels I (1995) Data driven bandwidth selection in local polynomial fitting. J R Stat Soc 57(2):371–394

    Google Scholar 

  • Fan J, Gijbels I (1996) Local polynomial modelling and its applications. Chapman and Hall

  • Farrell JA, Polycarpou MM (2006) Adaptive approximation based control. Wiley, New Jersey

    Book  Google Scholar 

  • Ferreira JP, Crisostomo M, Coimbra AP, Ribeiro B (2007) Simulation control of a biped robot with support vector regression. IEEE Int Symp Intell Signal Process

  • Figueiredo MAF, Jain AK (2002) Unsupervised learning of finite mixture models. IEEE Trans Pattern Anal Mach Intell 24(3):381–396

    Article  Google Scholar 

  • Gautier M, Khalil W (1992) Exciting trajectories for the identification of base inertial parameters of robots. Int J Robot Res 11(4):362–375

    Article  Google Scholar 

  • Ge SS, Lee TH, Tan EG (1998) Adaptive neural network control of flexible joint robots based on feedback linearization. Int J Syst Sci 29(6):623–635

    Article  Google Scholar 

  • Genov R, Chakrabartty S, Cauwenberghs G (2003) Silicon support vector machine with online learning. Int J Pattern Recognit Artif Intell 17:385–404

    Article  Google Scholar 

  • Girard A, Rasmussen CE, Candela JQ, Smith RM (2002) Gaussian process priors with uncertain inputs application to multiple-step ahead time series forecasting. Adv Neural Inf Process Syst

  • Glynn PW (1987) Likelihood ratio gradient estimation: an overview. In: Proceedings of the 1987 winter simulation conference

  • Gomi H, Kawato M (1993) Recognition of manipulated objects by motor learning with modular architecture networks. Neural Netw 6(4):485–497

    Article  Google Scholar 

  • Grollman DH, Jenkins OC (2008) Sparse incremental learning for interactive robot control policy estimation. IEEE International Conference on Robotics and Automation, Pasadena, CA, USA

  • Gu D, Hu H (2002) Predictive control for a car-like mobile robot. Robot Auton Syst 39:73–86

    Article  Google Scholar 

  • Haerdle WK, Mueller M, Sperlich S, Werwatz A (2004) Nonparametric and semiparametric models. Springer, New York

    Book  Google Scholar 

  • Haruno M, Wolpert DM, Kawato M (2001) Mosaic model for sensorimotor learning and control. Neural Comput 13(10):2201–2220

    Article  PubMed  CAS  Google Scholar 

  • Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning. Springer, New York

    Google Scholar 

  • Haykin S (1999) Neural networks: a comprehensive foundation. Prentice Hall, New Jersey

    Google Scholar 

  • Herbort O, Butz MV, Pedersen G (2010) The SURE_REACH model for motor learning and control of a redundant arm: from modeling human behavior to applications in robots. From motor to interaction learning in robots, strony 85–106

  • Hoffman H, Schaal S, Vijayakumar S (2009) Local dimensionality reduction for non-parametric regression. Neural Process Lett

  • Hoffmann M, Marques HG, Arieta AH, Sumioka H, Lungarella M, Pfeifer R (2010) Body schema in robotics: a review. IEEE Trans Auton Ment Dev 2(4):304–324

    Article  Google Scholar 

  • Jacobs R, Jordan M, Nowlan S, Hinton GE (1991) Adaptive mixtures of local experts. Neural Comput 3:79–87

    Article  Google Scholar 

  • Jacobson DH, Mayne DQ (1973) Differential dynamic programming. American Elsevier, New York

    Google Scholar 

  • Jordan I, Rumelhart D (1992) Forward models: supervised learning with a distal teacher. Cogn Sci 16:307–354

    Article  Google Scholar 

  • Joshi P, Maass W (2005) Movement generation with circuits of spiking neurons. Neural Comput 17(8):1715–1738

    Article  PubMed  Google Scholar 

  • Kalakrishnan M, Buchli J, Pastor P, Schaal S (2009) learning locomotion over rough terrain using terrain templates. IEEE Int Conf Intell Robots Syst

  • Kawato M (1990) Feedback error learning neural network for supervised motor learning. Adv Neural Comput

  • Kawato M (1999) Internal models for motor control and trajectory planning. Curr Opin Neurobiol 9(6):718–727

    Article  PubMed  CAS  Google Scholar 

  • Keyser RD, Cauwenberghe AV (1980) A self-tuning multistep predictor application. Automatica 17:167–174

    Article  Google Scholar 

  • Khalil W, Dombre E (2002) Modeling, identification and control of robots. Taylor & Francis Inc., Bristol

    Google Scholar 

  • Khatib O (1987) A unified approach for motion and force control of robot manipulators: the operational space formulation. J Robot Autom 3(1):43–53

    Article  Google Scholar 

  • Klanke S, Lebedev D, Haschke R, Steil JJ, Ritter H (2006) Dynamic path planning for a 7-dof robot arm. In: Proceedings of the 2009 IEEE international conference on intelligent robots and systems

  • Ko J, Fox D (2009) GP-bayesfilters: Bayesian filtering using gaussian process prediction and observation models. Auton Robots 27(1):75–90

    Article  Google Scholar 

  • Kocijan J, Murray-Smith R, Rasmussen C, Girard A (2004) Gaussian process model based predictive control. In: Proceedings of the American control conference

  • Kopicki M (2010) Prediction learning in robotic manipulation. Praca doktorska, University of Birmingham

  • Kopicki M, Zurek S, Stolkin R, Morwald T, Wyatt J (2011) Learning to predict how rigid objects behave under simple manipulation. In: Proceedings of the 2010 IEEE international conference on robotics and automation

  • Kroemer O, Detry R, Piater J, Peters J (2009) Active learning using mean shift optimization for robot grasping. International conference on intelligent robots and systems, St. Louis, MO, USA

  • Kröse BJ, Vlassis N, Bunschoten R, Motomura Y (2001) A probabilistic model for appearance-based robot localization. Image Visi Comput 19:381–391

    Article  Google Scholar 

  • Krupka E, Tishby N (2007) Incorporating prior knowledge on features into learning. International conference on artificial intelligence and statistics, San Juan, Puerto Rico

  • Lafferty JD, McCallum A, Pereira FCN (2001) Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: Proceedings of the 18th international conference on machine learning

  • Layne JR, Passino KM (1996) Fuzzy model reference learning control. J Intell Fuzzy Syst 4:33–47

    Google Scholar 

  • Littman M, Sutton RS, Singh S (2001) Predictive representations of state. Adv Neural Inf Process Syst

  • Ljung L (2004) System identification—theory for the user. Prentice Hall, New Jersey

    Google Scholar 

  • Lopes M, Damas B (2007) A learning framework for generic sensory-motor maps. In: Proceedings of the international conference on intelligent Robots Syst

  • Luca AD, Lucibello P (1998) A general algorithm for dynamic feedback linearization of robots with elastic joints. In: Proceedings of the IEEE intemational conference on robotics and automation

  • Lukocevicius M, Jaeger H (2009) Reservoir computing approaches to recurrent neural network training. Comput Sci Rev 3(3):127–149

    Article  Google Scholar 

  • Ma J, Theiler J, Perkins S (2005) Accurate on-line support vector regression. Neural Comput 15:2683–2703

    Article  Google Scholar 

  • Maciejowski JM (2002) Predictive control with constraints. Prentice Hall, New Jersey

    Google Scholar 

  • MacKay DJ (1992) A practical Bayesian framework for back-propagation networks. Neural Comput 4(3):448–472

    Article  Google Scholar 

  • Martinez-Cantin R, Freitas OD, Doucet A, Castellanos JA (2007) Active policy learning for robot planning and exploration under uncertainty. In: Proceedings of robotics: science and systems

  • Martinez-Cantin R, Lopes M, Montesano L (2010) Body schema acquisition through active learning. IEEE Int Conf Robot Autom

  • Miller WT III (1989) Real-time application of neural networks for sensor-based control of robots with vision. IEEE Trans Syst Man Cybern 19(4):825–831

    Article  Google Scholar 

  • Miller WT III, Glanz FH, Kraft LG III (1987) Application of a general learning algorithm to the control of robotic manipulators. Int J Robot Res 6(2):84–98

    Article  Google Scholar 

  • Miyamoto H, Kawato M, Setoyama T, Suzuki R (1988) Feedback-error-learning neural network for trajectory control of a robotic manipulator. Neural Netw 1(3):251–265

    Article  Google Scholar 

  • Moore A (1992) Fast, robust adaptive control by learning only forward models. Adv Neural Inf Process Syst

  • Moore A, Lee MS (1994) Efficient algorithms for minimizing cross validation error. Proceedings of the 11th international conference on machine learning

  • Morimoto J, Zeglin G, Atkeson CG (2003) Minimax differential dynamic programming: application to a biped walking robot. In: Proceedings of the 2009 IEEE international conference on intelligent robots and systems

  • Mosca E, Zappa G, Lemos JM (1989) Robustness of multipredictor adaptive regulators: MUSMAR. Automatica 25:521–529

    Article  Google Scholar 

  • Nakanishi J, Cory R, Mistry M, Peters J, Schaal S (2008) Operational space control: a theoretical and emprical comparison. Int J Robot Res 27(6):737–757

    Article  Google Scholar 

  • Nakanishi J, Farrell JA, Schaal S (2005) Composite adaptive control with locally weighted statistical learning. Neural Netw 18(1):71–90

    Article  PubMed  Google Scholar 

  • Nakanishi J, Schaal S (2004) Feedback error learning and nonlinear adaptive control. Neural Netw 17(10)

  • Nakayama H, Yun Y, Shirakawa M (2008) Multi-objective model predictive control. In: Proceedings of the 19th international conference on multiple criteria decision making

  • Narendra K, Balakrishnan J (1997) Adaptive control using multiple models. IEEE Trans Autom Control 42(2):171–187

    Article  Google Scholar 

  • Narendra K, Balakrishnan J, Ciliz M (1995) Adaptation and learning using multiple models, switching and tuning. IEEE Control Syst Mag 15(3):37–51

    Article  Google Scholar 

  • Narendra KS, Annaswamy AM (1987) Persistent excitation in adaptive systems. Int J Control 45:127–160

    Article  Google Scholar 

  • Narendra KS, Annaswamy AM (1989) Stable adaptive systems. Prentice Hall, New Jersey

    Google Scholar 

  • Neal RM (1996) Bayesian learning for networks. Lect Notes Stat

  • Negenborn R, Schutter BD, Wiering MA, Hellendoorn H (2005) Learning-based model predictive control for markov decision processes. In: Proceedings of the 16th IFAC world congress

  • Ng AY, Coates A, Diel M, Ganapathi V, Schulte J, Tse B, Berger E, Liang E (2004) Autonomous inverted helicopter flight via reinforcement learning. In: Proceedings of the 11th international symposium on experimental robotics

  • Ng AY, Jordan M (2000) Pegasus: a policy search method for large mdps and pomdps. In: Proceedings of the 16th conference in uncertainty in artificial intelligence

  • Nguyen-Tuong D, Peters J (2009) Model learning with local gaussian process regression. Adv Robot 23(15):2015–2034

    Article  Google Scholar 

  • Nguyen-Tuong D, Peters J (2010) Incremental sparsification for real-time online model learning. Neurocomputing (in press)

  • Nguyen-Tuong D, Peters J (2010) Using model knowledge for learning inverse dynamics. In: Proceedings of the 2010 IEEE international conference on robotics and automation

  • Nicosia S, Tomei P (1984) Model reference adaptive control algorithms for industrial robots. Automatica 20:635–644

    Article  Google Scholar 

  • Nowlan S, Hinton GE (1991) Evaluation of adaptive mixtures of competing experts. Adv Neural Inf Process Syst

  • Otani K, Kakizaki T (1993) Motion planning and modeling for accurately identifying dynamic parameters of an industrial robotic manipulator. International Symposium on Industrial Robots

  • Patino HD, Carelli R, Kuchen BR (2002) Neural networks for advanced control of robot manipulators. IEEE Trans Neural Netw 13(2):343–354

    Article  PubMed  CAS  Google Scholar 

  • Pelossof R, Miller A, Allen P, Jebara T (2004) An svm learning approach to robotic grasping. In: IEEE international conference on robotics and automation

  • Peters J, Mistry M, Udwadia FE, Nakanishi J, Schaal S (2008) A unifying methodology for robot control with redundant DoFs. Auton Robots 24(1):1–12

    Article  Google Scholar 

  • Peters J, Schaal S (2008) Learning to control in operational space. Int J Robot Res 27(2):197–212

    Article  Google Scholar 

  • Petkos G, Toussaint M, Vijayakumar S (2006) Learning multiple models of non-linear dynamics for control under varying contexts. In: Proceedings of the international conference on artificial neural networks

  • Plagemann C, Kersting K, Pfaff P, Burgard W (2007) Heteroscedastic gaussian process regression for modeling range sensors in mobile robotics. Snowbird learning workshop

  • Plagemann C, Mischke S, Prentice S, Kersting K, Roy N, Burgard W (2008) Learning predictive terrain models for legged robot locomotion. In: Proceedings of the IEEE international conference on intelligent robots and systems

  • Porrill J, PDP, Stone JV (2004) Recurrent cerebellar architecture solves the motor-error problem. Proc R Soc B

  • Rasmussen CE (1996) Evaluation of gaussian processes and other methods for non-linear regression. University of Toronto, Toronto

    Google Scholar 

  • Rasmussen CE, Ghahramani Z (2002) Infinite mixtures of gaussian process experts. Adv Neural Inf Process Syst

  • Rasmussen CE, Kuss M (2003) Gaussian processes in reinforcement learning. Adv Neural Inf Process Syst

  • Rasmussen CE, Williams CK (2006) Gaussian processes for Machine Learning. MIT Press, Massachusetts Institute of Technology

  • Reinhart RF, Steil JJ (2008) Recurrent neural associative learning of forward and inverse kinematics for movement generation of the redundant pa-10 robot. Symposium on learning and adaptive behavior in robotic systems

  • Reinhart RF, Steil JJ (2009) Attractor-based computation with reservoirs for online learning of inverse kinematics. In: Proceedings of the European symposium on artificial neural networks

  • Reinhart RF, Steil JJ (2009) Reaching movement generation with a recurrent neural network based on learning inverse kinematics. In: Proceedings of the conference on humanoid robots

  • Rolf M, Steil JJ, Gienger M (2010) Efficient exploration and learning of whole body kinematics. In: Proceedings of the international conference on development and learning

  • Rolf M, Steil JJ, Gienger M (2010) Goal babbling permits direct learning of inverse kinematics. IEEE Trans Auton Ment Dev 2(3):216–229

    Article  Google Scholar 

  • Rottmann A, Burgard W (2009) Adaptive autonomous control using online value iteration with gaussian processes. In: Proceedings of the IEEE international conference on robotics and automation

  • Roweis S, Saul L (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290

  • Salaun C, Padois V, Sigaud O (2009) Control of redundant robots using learned models: an operational space control approach. In: Proceedings of the 2009 IEEE international conference on intelligent robots and systems

  • Sanger TD (1989) Optimal unsupervised learning in a single-layer linear feedforward neural network. Neural Netw 2(36):459–473

    Article  Google Scholar 

  • Schaal S (1999) Is imitation learning the route to humanoid robots? Trends in cognitive sciences

  • Schaal S, Atkeson CG (2010) Learning control in robotics: trajectory-based optimal control techniques. IEEE Robot Autom Mag

  • Schaal S, Atkeson CG, Vijayakumar S (2002) Scalable techniques from nonparametric statistics for real-time robot learning. Appl Intell 17(1):49–60

    Article  Google Scholar 

  • Schaal S, Sternad D (1998) Programmable pattern generators. Int Conf Comput Intell Neurosci

  • Schölkopf B, Mika S, Burges CJC, Knirsch P, Müller K-R, Rätsch G, Smola AJ (1999) Input space versus feature space in kernel-based methods. IEEE Trans Neural Netw 10(5):1000–1017

    Article  PubMed  Google Scholar 

  • Schölkopf B, Simard P, Smola A, Vapnik V (1997) Prior knowledge in support vector kernel. Advances in Neural Information Processing Systems, Denver, CO, USA

    Google Scholar 

  • Schölkopf B, Smola A (2002) Learning with kernels: support vector machines, regularization, optimization and beyond. MIT Press, Cambridge

    Google Scholar 

  • Schölkopf B, Smola A, Williamson R, Bartlett P (2000) New support vector algorithms. Neural Comput 12(5)

  • Schrauwen B, Verstraeten D, Campenhout JV (2007) An overview of reservoir computing: Theory, applications and implementations. In: Proceedings of the 15th European symposium on artificial neural networks, strony 471–482

  • Sciavicco L, Siciliano B (1996) Modeling and control of robot manipulators. McGraw-Hill, New York

    Google Scholar 

  • Seeger M (2004) Gaussian processes for machine learning. Int J Syst

  • Sentis L, Khatib O (2005) Synthesis of whole-body behaviors through hierarchical control of behavioral primitives. Int J Hum Robot 2(4):505–518

    Article  Google Scholar 

  • Shibata T, Schaal C (2001) Biomimetic gaze stabilization based on feedback-error learning with nonparametric regression networks. Neural Netw 14(2):201–216

    Article  PubMed  CAS  Google Scholar 

  • Skočaj D, Kristan M, Vrečko A, Leonardis A, Fritz M, Stark M, Schiele B, Hongeng S, Wyatt JL (2010) Multi-modal learning. Cogn Syst 8:265–309

    Article  Google Scholar 

  • Slotine J-JE, Li W (1991) Applied nonlinear control. Prentice Hall, New Jersey

    Google Scholar 

  • Smith OJ (1959) A controller to overcome dead-time. Instrum Soc Am J 6:28–33

    Google Scholar 

  • Smola A, Friess T, Schoelkopf B (1998) Semiparametric support vector and linear programming machines. Advances in neural information processing systems, Denver, CO, USA

    Google Scholar 

  • Smola AJ, Schölkopf B (2004) A tutorial on support vector regression. Stat Comput 14(3):199–222

    Article  Google Scholar 

  • Spong MW, Hutchinson S, Vidyasagar M (2006) Robot dynamics and control. Wiley, New York

    Google Scholar 

  • Steffen J, Klanke S, Vijayakumar S, Ritter HJ (2009) Realising dextrous manipulation with structured manifolds using unsupervised kernel regression with structural hints. ICRA 2009 workshop: approaches to sensorimotor learning on humanoid robots, Kobe, Japan 2009.

  • Steil JJ (2004) Backpropagation-decorrelation: online recurrent learning with O(n) complexity. In: Proceedings of the international joint conference on neural networks, July 2004

  • Steil JJ (2007) Online reservoir adaptation by intrinsic plasticity for backpropagation-decorrelation and echo state learning. Neural Netw 20(3):353–364

    Article  PubMed  Google Scholar 

  • Stilman M, Kuffner JJ (2008) Planning among movable obstacles with artificial constraints. Int J Robot Res 27(12):1295–1307

    Article  Google Scholar 

  • Sturm J, Plagemann C, Burgard W (2008) Unsupervised body scheme learning through self-perception. IEEE international conference on robotics and automation, Pasadena, CA, USA

  • Sutton RS (1991) Dyna, an integrated architecture for learning, planning, and reacting. SIGART Bull 2(4):160–163

    Article  Google Scholar 

  • Swevers J, Ganseman C, Tükel D, Schutter JD, Brussel HV (1997) Optimal robot excitation and identification. IEEE Trans Robot Autom 13:730–740

    Article  Google Scholar 

  • Tenenbaum J, de Silva V, Langford J (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290

  • Tevatia G, Schaal S (2008) Efficient inverse kinematics algorithms for high-dimensional movement systems. University of Southern California

  • Thrun S, Mitchell T (1995) Lifelong robot learning. Robot Auton Syst

  • Ting J, D’Souza A, Schaal S (2009) A bayesian approach to nonlinear parameter identification for rigid-body dynamics. Neural Netw

  • Ting J, Kalakrishnan M, Vijayakumar S, Schaal S (2008) Bayesian kernel shaping for learning control. Adv Neural Inf Process Syst

  • Titsias MK, Lawrence ND (2010) Bayesian gaussian process latent variable model. In: Proceedings of the 13th international conference on articial intelligence and statistics

  • Toussaint M, Vijayakumar S (2005) Learning discontinuities with products-of-sigmoids for switching between local models. In: Proceedings of the 22nd international conference on machine learning

  • Treps V (2000) A bayesian committee machine. Neural Comput 12(11):2719–2741

    Article  Google Scholar 

  • Treps V (2001) Mixtures of gaussian process. Adv Neural Inf Process Syst

  • Tsochantaridis I, Joachims T, Hofmann T, Altun Y (2005) Large margin methods for structured and interdependent output variables. J Mach Learn Res 6:1453–1484

    Google Scholar 

  • Ulbrich S, Angulo V, Asfour T, Torras C, Dillmann R (2009) Rapid learning of humanoid body schemas with kinematic bezier maps. International conference on humanoid robots

  • Urtasun R, Darrell T (2008) Sparse probabilistic regression for activity-independent human pose inference. International conference in computer vision and pattern recognition, Anchorage, Alaska

  • Vempaty P, Cheok K, Loh R (2009) Model reference adaptive control for actuators of a biped robot locomotion. In: Proceedings of the world congress on engineering and computer science

  • Vijayakumar S, D’Souza A, Schaal S (2005) Incremental online learning in high dimensions. Neural Comput 12(11):2602–2634

    Article  Google Scholar 

  • Vijayakumar S, Schaal S (2000) Locally weighted projection regression: an O(n) algorithm for incremental real time learning in high dimensional space. International conference on machine learning, proceedings of the sixteenth conference

  • Wan EA, Bogdanov AA (2001) Model predictive neural control with applications to a 6 dof helicopter model. In: Proceedings of the 2001 American control conference

  • Weber M, Welling M, Perona P (2000) Unsupervised learning of models for recognition. In: Proceedings of the 6th European conference on computer vision, strony 18–32

  • Wolpert DM, Kawato M (1998) Multiple paired forward and inverse models for motor control. Neural Netw 11:1317–1329

    Article  PubMed  CAS  Google Scholar 

  • Wolpert DM, Miall RC, Kawato M (1998) Internal models in the cerebellum. Trends Cogn Sci 2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duy Nguyen-Tuong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen-Tuong, D., Peters, J. Model learning for robot control: a survey. Cogn Process 12, 319–340 (2011). https://doi.org/10.1007/s10339-011-0404-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10339-011-0404-1

Keywords

Navigation