Skip to main content
Log in

Construction and Application of Multivariable Wavelet Finite Element for Flat Shell Analysis

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

A Correction to this article was published on 22 November 2018

This article has been updated

Abstract

Based on B-spline wavelet on the interval (BSWI) and the multivariable generalized variational principle, the multivariable wavelet finite element for flat shell is constructed by combining the elastic plate element and the Mindlin plate element together. First, the elastic plate element formulation is derived from the generalized potential energy function. Due to its excellent numerical approximation property, BSWI is used as the interpolation function to separate the solving field variables. Second, the multivariable wavelet Mindlin plate element is deduced and constructed according to the multivariable generalized variational principle and BSWI. Third, by following the displacement compatibility requirement and the coordinate transformation method, the multivariable wavelet finite element for flat shell is constructed. The novel advantage of the constructed element is that the solving precision and efficiency can be improved because the generalized displacement field variables and stress field variables are interpolated and solved independently. Finally, several numerical examples including bending and vibration analyses are given to verify the constructed element and method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 22 November 2018

    In all the articles in Acta Mechanica Solida Sinica, Volume 31, Issues 1–4, the copyright is incorrectly displayed as “The Chinese Society of Theoretical and Applied Mechanics and Technology ” where it should be “The Chinese Society of Theoretical and Applied Mechanics”.

References

  1. Chapelle D, Bathe KJ. The finite element analysis of shells—fundamentals. Berlin: Springer; 2003.

    Book  Google Scholar 

  2. Bouayed K, Hamdi MA. Finite element analysis of the dynamic behavior of a laminated windscreen with frequency dependent viscoelastic core. J Acoust Soc Am. 2012;132:757–66.

    Article  Google Scholar 

  3. Huang YH, Ma CC. Experimental measurements and finite element analysis of the coupled vibrational characteristics of piezoelectric shells. IEEE Trans Ultrason Ferroelectr Freq Control. 2012;59:785–98.

    Article  Google Scholar 

  4. Schwarze M, Reese S. A reduced integration solid-shell finite element based on the EAS and the ANS concept-large deformation problems. Int J Numer Methods Eng. 2010;85:289–329.

    Article  MathSciNet  Google Scholar 

  5. Jeon HM, Lee PS, Bathe KJ. The MITC3 shell finite element enriched by interpolation covers. Comput Struct. 2013;134:128–42.

    Article  Google Scholar 

  6. Cinefra M, Carrera E, Valvano S. Refined shell elements for the analysis of multilayered structures with piezoelectric layers. In: 6th ECCOMAS conference on smart structures and materials, Politecnico di Torino, 2013, 24–26 June.

  7. Wang G, Cui XY, Liang ZM, Li GY. A coupled smoothed finite element method for structural–acoustic analysis of shells. Eng Anal Bound Elem. 2015;61:207–17.

    Article  MathSciNet  Google Scholar 

  8. Cinefra M, Carrera E. Shell finite elements for the analysis of multifield problems in multilayered composite structures. Appl Mech Mater. 2016;828:215–36.

    Article  Google Scholar 

  9. Cohen A. Numerical analysis of wavelet method. Amsterdam: Elsevier Press; 2003.

    MATH  Google Scholar 

  10. Li B, Chen X. Wavelet-based numerical analysis: a review and classification. Finite Elem Anal Des. 2014;81:14–31.

    Article  MathSciNet  Google Scholar 

  11. Yang ZB, Chen XF, Xie Y, Miao HH, Gao JJ, Qi KZ. Hybrid two-step method of damage detection for plate-like structures. Struct Control Health Monit. 2016;23(2):267–85.

    Article  Google Scholar 

  12. Zhang XW, Gao RX, Yan RQ, Chen XF, Sun C, Yang ZB. Analysis of laminated plates and shells using B-spline wavelet on interval finite element. Int J Struct Stab Dyn. 2017;17(4):1750062.

    Article  MathSciNet  Google Scholar 

  13. Zhang XW, Chen XF, Yang ZB, Shen ZJ. Multivariable wavelet finite element for flexible skew thin plate analysis. Sci China Technol Sci. 2014;57(8):1532–40.

    Article  Google Scholar 

  14. Zhang X, Chen X, Yang Z, et al. A stochastic wavelet finite element method for 1D and 2D structures analysis. Shock Vib. 2014;2014(5):167–70.

    Google Scholar 

  15. Zhang XW, Gao RX, Yan RQ, Chen XF, Sun C, Yang ZB. B-spline wavelet on interval finite element method for static and vibration analysis of stiffened flexible thin plate. CMC Comput Mater Contin. 2016;52:53–71.

    Google Scholar 

  16. Samaratunga D, Jha R, Gopalakrishnan S. Wavelet spectral finite element for wave propagation in shear deformable laminated composite plates. Compos Struct. 2014;108:341–53.

    Article  Google Scholar 

  17. Yang Z, Chen X, He Y, et al. The analysis of curved beam using B-spline wavelet on interval finite element method. Shock Vib. 2014;2014(3):67–75.

    Google Scholar 

  18. Zuo H, Yang ZB, Chen XF. Analysis of laminated composite plates using wavelet finite element method and higher-order plate theory. Compos Struct. 2015;131:248–58.

    Article  Google Scholar 

  19. Yang ZB, Chen XF, Zhang XW. Free vibration and buckling analysis of plates using B-spline wavelet on the interval Mindlin element. Appl Math Model. 2013;37(5):3449–66.

    Article  MathSciNet  Google Scholar 

  20. Yang ZB, Chen XF, Li X. Wave motion analysis in arch structures via wavelet finite element method. J Sound Vib. 2014;333(2):446–69.

    Article  Google Scholar 

  21. Mozgaleva ML, Akimov PA. About verification of wavelet-based discrete-continual finite element method for three-dimensional problems of structural analysis part 1: structures with constant physical and geometrical parameters along basic direction. Appl Mech Mater. 2015;709:105–8.

    Article  Google Scholar 

  22. Mozgaleva ML, Akimov PA. About verification of wavelet-based discrete-continual finite element method for three-dimensional problems of structural analysis part 2: structural with piecewise constant physical and geometrical parameters along basic direction. Appl Mech Mater. 2015;709:109–12.

    Article  Google Scholar 

  23. Tanaka S, Suzuki H, Ueda S, Sannomaru S. An extended wavelet Galerkin method with a high-order B-spline for 2D crack problems. Acta Mech. 2015;226:2159–75.

    Article  MathSciNet  Google Scholar 

  24. Xue XX, Zhang XW, Li B, Qiao BJ, Chen XF. Modified Hermitian cubic spline wavelet on interval finite element for wave propagation and load identification. Finite Elem Anal Des. 2014;91:48–58.

    Article  Google Scholar 

  25. Xue XX, Chen XF, Zhang XW, Qiao BJ. Hermitian plane wavelet finite element method: wave propagation and load identification. Comput Math Appl. 2016;72:2920–42.

    Article  MathSciNet  Google Scholar 

  26. Geng J, Zhang XW, Chen XF, Xue XX. High-frequency vibration analysis of thin plate based on wavelet-based FEM using B-spine wavelet on interval. Sci China Technol Sci. 2017;60:792–806.

    Article  Google Scholar 

  27. Geng J, Zhang XW, Chen XF. High-frequency dynamic response of thin plate with uncertain parameter based on average wavelet finite element method (AWFEM). Mech Syst Signal Process. 2018;110:180–92.

    Article  Google Scholar 

  28. Han J, Ren W, Huang Y. A multivariable wavelet-based finite element method and its application to thick plates. Finite Elem Anal Des. 2005;41:821–33.

    Article  Google Scholar 

  29. Zhang XW, Chen XF, He ZJ, Yang ZB. The analysis of shallow shells based on multivariable wavelet finite element method. Acta Mech Solida Sin. 2011;24:450–60.

    Article  Google Scholar 

  30. Zhang XW, Zuo H, Liu JX, Chen XF, Yang ZB. Analysis of shallow hyperbolic shell by different kinds of wavelet elements based on B-spline wavelet on the interval. Appl Math Model. 2016;40:1914–28.

    Article  MathSciNet  Google Scholar 

  31. Zhang XW, Gao RX, Yan RQ, Chen XF, Sun C, Yang ZB. Multivariable wavelet finite element-based vibration model for quantitative crack identification by using particle swarm optimization. J Sound Vib. 2016;375:200–16.

    Article  Google Scholar 

  32. Wang Y, Wu Q. Crack detection in a pipe by adaptive subspace iteration algorithm and least square support vector regression. J VibroEng. 2014;16:2800–12.

    Google Scholar 

  33. Zhong YT, Xiang JW. Construction of wavelet-based elements for static and stability analysis of elastic problems. Acta Mech Solida Sin. 2011;24:355–64.

    Article  Google Scholar 

  34. Chui CK, Quak E. Wavelets on a bounded interval. Numer Methods Approx Theory. 1992;1:53–7.

    Article  MathSciNet  Google Scholar 

  35. Quak E, Weyrich N. Decomposition and reconstruction algorithms for spline wavelets on a bounded interval. Appl Comput Harmon Anal. 1994;1:217–31.

    Article  MathSciNet  Google Scholar 

  36. Goswami JC, Chan AK, Chui CK. On solving first-kind integral equations using wavelets on a bounded interval. IEEE Trans Antennas Propag. 1995;43:614–22.

    Article  MathSciNet  Google Scholar 

  37. Bathe KJ, Wilson EL. Numerical methods in finite element analysis. New York: Prentice-hall Inc.; 1976.

    MATH  Google Scholar 

  38. Shen PC. Multivariable spline finite element method. Beijing: Science press; 1997.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51775408), the Project funded by the Key Laboratory of Product Quality Assurance & Diagnosis (No. 2014SZS14-P05) and the open foundation of Zhejiang Provincial Key Laboratory of Laser Processing Robot/Key Laboratory of Laser Precision Processing & Detection (lzsy-12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuefeng Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., He, Y., Gao, R.X. et al. Construction and Application of Multivariable Wavelet Finite Element for Flat Shell Analysis. Acta Mech. Solida Sin. 31, 391–404 (2018). https://doi.org/10.1007/s10338-018-0038-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-018-0038-2

Keywords

Navigation