Skip to main content
Log in

B-spline wavelet boundary element method for three-dimensional problems

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper aims to propose a wavelet boundary element method (WBEM) to study the three-dimensional elasticity problem and potential problem. In contrast with conventional polynomial interpolation in the BEM, the scaling functions of the B-spline wavelet on the interval (BSWI) are applied to derive calculated formats of the WBEM, construct BSWI elements, discretize the geometric shape, and form BSWI BEM algebraic equations. Because BSWI scaling functions have specific expressions, the integration related to scaling functions can be evaluated directly without other complicated calculation steps like applying other wavelet bases. The Gauss quadrature scheme based on the background cell is implemented to evaluate the integration involved in the WBEM. Furthermore, the singular integration problem appearing in the WBEM can be transformed into that appearing in traditional BEM to solve. Unlike the WBEM in the published literature, arbitrary boundary conditions can be solved directly as the wavelet-based elements are employed to discrete the geometry of structures. Some typical examples with several boundary conditions are provided to verify this method. The numerical solutions illustrate the good convergence, reliability, and flexibility of WBEM by comparison with the traditional BEM and exact solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Paul, S., Panja, M.M., Mandal, B.N.: Multiscale approximation of the solution of weakly singular second kind Fredholm integral equation in Legendre multiwavelet basis. J. Comput. Appl. Math. 300, 275–289 (2016)

    Article  MathSciNet  Google Scholar 

  2. Gao, Z.K., Li, S., Dang, W.D., Yang, Y.X., Do, Y., Grebogi, C.: Wavelet multiresolution complex network for analyzing multivariate nonlinear time series. Int. J. Bifurc. Chaos. 27, 306–318 (2017)

    MATH  Google Scholar 

  3. Heydari, M.H., Avazzadeh, Z., Haromi, M.F.: A wavelet approach for solving multi-term variable-order time fractional diffusion-wave equation. Appl. Math. Comput. 341, 215–228 (2019)

    MathSciNet  MATH  Google Scholar 

  4. Tanaka, S., Okada, H., Okazawa, S.: A wavelet Galerkin method employing B-spline bases for solid mechanics problems without the use of a fictitious domain. Comput. Mech. 50, 35–48 (2012)

    Article  MathSciNet  Google Scholar 

  5. Li, B., Chen, X.F.: Wavelet-based numerical analysis: a review and classification. Finite Elem. Anal. Des. 81, 14–31 (2014)

    Article  MathSciNet  Google Scholar 

  6. Chen, X.F., Yang, S.J., Ma, J.X., He, Z.J.: The construction of wavelet finite element and its application. Finite Elem. Anal. Des. 40, 541–554 (2004)

    Article  Google Scholar 

  7. Mitra, M., Gopalakrishnan, S.: Extraction of wave characteristics from wavelet-based spectral finite element formulation. Mech. Syst. Signal Proc. 20, 2046–2079 (2006)

    Article  Google Scholar 

  8. Xiang, J.W., Long, J.Q., Jiang, Z.S.: A numerical study using Hermitian cubic spline wavelets for the analysis of shafts. Proc. Inst. Mech. Eng. Part C-J. Eng. Mech. Eng. Sci. 224, 1843–1851 (2010)

    Article  Google Scholar 

  9. Xiang, J.W., Liang, M.: Multiple damage detection method for beams based on multi-scale elements using Hermite cubic spline wavelet. CMES-Comput. Model. Eng. Sci. 73, 267–298 (2011)

    MATH  Google Scholar 

  10. Xiang, J.W., Chen, X.F., He, Y.M., He, Z.J.: The construction of plane elastomechanics and Mindlin plate elements of B-spline wavelet on the interval. Finite Elem. Anal. Des. 42, 1269–1280 (2006)

    Article  Google Scholar 

  11. Xiang, J.W., Chen, X.F., He, Z.J., Dong, H.B.: The construction of 1D wavelet finite elements for structural analysis. Comput. Mech. 40, 325–339 (2007)

    Article  MathSciNet  Google Scholar 

  12. Xiang, J.W., Chen, X.F., He, Z.J.: Crack fault quantitative diagnosis based on finite element of B-spline wavelet on the interval. Front. Mech. Eng. 47, 243–255 (2007)

    Google Scholar 

  13. Yang, Z.B., Chen, X.F., Li, B., He, Z.J., Miao, H.H.: Vibration analysis of curved shell using B-spline wavelet on the interval (BSWI) finite elements method and general shell theory. CMES-Comput. Model. Eng. Sci. 85, 129–155 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Yang, Z.B., Chen, X.F., Zhang, X.W., He, Z.J.: Free vibration and buckling analysis of plates using B-spline wavelet on the interval Mindlin element. Appl. Math. Model. 37, 3449–3466 (2013)

    Article  MathSciNet  Google Scholar 

  15. Zhang, X.W., Zuo, H., Liu, J.X., Chen, X.F., Yang, Z.B.: Analysis of shallow hyperbolic shell by different kinds of wavelet elements based on B-spline wavelet on the interval. Appl. Math. Model. 47, 1914–1928 (2016)

    Article  MathSciNet  Google Scholar 

  16. Zhang, X.W., He, Y.F., Gao, R.X., Geng, J., Chen, X.F., Xiang, J.W.: Construction and application of multivariable wavelet finite element for flat shell analysis. Acta Mech. Solida Sin. 31, 391–404 (2018)

    Article  Google Scholar 

  17. Zhong, Y.T., Xiang, J.W.: Construction of wavelet-based elements for static and stability analysis of elastic problems. Acta Mech. Solida Sin. 24, 355–364 (2011)

    Article  Google Scholar 

  18. Rodriguez, R.Q., Galvis, A.F., Sollero, P., Tan, C.L., Albuquerque, E.L.: Transient dynamic analysis of generally anisotropic materials using the boundary element method. Acta Mech. 229, 1893–1910 (2018)

    Article  MathSciNet  Google Scholar 

  19. Zhang, J.M., Han, L., Zhong, Y.D., Dong, Y.Q., Lin, W.C.: Boundary element analysis for elasticity problems using expanding element interpolation method. Eng. Comput. 37, 1–20 (2020)

    Article  Google Scholar 

  20. Yang, L.F., Chen, Z., Gao, Q., Ju, J.W.: Compensation length of two-dimensional chloride diffusion in concrete using a boundary element model. Acta Mech. 224, 124–137 (2013)

    MathSciNet  MATH  Google Scholar 

  21. Koro, K., Abe, K.: Non-orthogonal spline wavelets for boundary element analysis. Eng. Anal. Bound. Elem. 25, 149–164 (2001)

    Article  Google Scholar 

  22. Xiao, J.Y., Wen, L.H., Zhang, D.: A wavelet-integration-free periodic wavelet Galerkin BEM for 2D potential problems. Eng. Comput. 24, 306–318 (2007)

    Article  Google Scholar 

  23. Xiao, J.Y., Tausch, J., Hu, Y.C.: A-posteriori compression of wavelet-BEM matrices. Comput. Mech. 44, 705–715 (2009)

    Article  MathSciNet  Google Scholar 

  24. Harbrecht, H., Konik, M., Schneider, R.: Fully discrete wavelet Galerkin schemes. Eng. Anal. Bound. Elem. 27, 423–437 (2003)

    Article  Google Scholar 

  25. Lage, C., Schwab, C.: Wavelet Galerkin algorithms for boundary integral equations. SIAM J. Sci. Comput. 20, 2195–2222 (1999)

    Article  MathSciNet  Google Scholar 

  26. Rathsfeld, F.: A wavelet algorithm for the boundary element solution of a geodetic boundary value problem. Comput. Mech. Appl. Mech. Eng. 157, 267–287 (1998)

    Article  MathSciNet  Google Scholar 

  27. Koro, K., Abe, K., Tazaki, H.: Application of discrete wavelet transform to wavelet collocation BEM. J. Appl. Mech. 2, 153–162 (1999)

    Article  Google Scholar 

  28. Kim, Y.Y., Jang, G.W.: Hat interpolation wavelet-based multi-scale Galerkin method for thin-walled box beam analysis. Int. J. Numer. Methods Eng. 53, 1575–1592 (2002)

    Article  MathSciNet  Google Scholar 

  29. Tanaka, S., Suzuki, H., Ueda, S., Sannomaru, S.: An extended wavelet Galerkin method with a high-order B-spline for 2D crack problems. Acta Mech. 226, 2159–2175 (2015)

    Article  MathSciNet  Google Scholar 

  30. Tanaka, S., Sannomaru, S., Imachi, M., Hagihara, S., Okazawa, S., Okada, H.: Analysis of dynamic stress concentration problems employing spline-based wavelet Galerkin method. Eng. Anal. Bound. Elem. 58, 129–139 (2015)

    Article  MathSciNet  Google Scholar 

  31. Tanaka, S., Okada, H., Okazawa, S., Fujikubo, M.: Fracture mechanics analysis using the wavelet Galerkin method and extended finite element method. Int. J. Numer. Methods Eng. 93, 1082–1108 (2013)

    Article  MathSciNet  Google Scholar 

  32. Zhang, X.W., Chen, X.F., Wang, X.Z., He, Z.J.: Multivariable finite elements based on B-spline wavelet on the interval for thin plate static and vibration analysis. Finite Elem. Anal. Des. 46, 416–427 (2010)

    Article  MathSciNet  Google Scholar 

  33. Zhang, X.W., Gao, R.X., Yan, R.Q., Chen, X.F., Sun, C., Yang, Z.B.: Analysis of laminated plates and shells using B-spline wavelet on interval finite element. Int. J. Struct. Stab. Dyn. 4, 1750062 (2017)

    Article  MathSciNet  Google Scholar 

  34. Chui, C.K., Quak, E.: Wavelets on a bounded interval. Numer. Meth. Approx. Theory 1, 53–57 (1992)

    Article  MathSciNet  Google Scholar 

  35. Goswami, J.C., Chan, A.K., Chui, C.K.: On solving first-kind integral equations using wavelets on a bounded interval. IEEE Trans. Antennas Propag. 43, 614–622 (1995)

    Article  MathSciNet  Google Scholar 

  36. Sha, Y.P., Lu, C.H., Pan, W., Chen, S.J.: The arbitrary boundary method to determine the performance of membrane-type restrictors. Proc. Inst. Mech. Eng. J-J. Eng. 235, 103–113 (2020)

    Article  Google Scholar 

  37. Vadlamani, S., Arun, C.O.: A background cell based numerical integration for B-spline wavelet on the interval finite element method. Eng. Comput. 36, 569–598 (2019)

    Article  Google Scholar 

  38. Nagaranjan, A., Mukherjee, S.: A mapping method for numerical evaluation of two-dimensional integrals with 1/r singularity. Comput. Mech. 12, 19–26 (1993)

    Article  MathSciNet  Google Scholar 

  39. Qu, W.Z., Zhang, Y.M., Liu, C.S.: Boundary stress analysis using a new regularized boundary integral equation for three-dimensional elasticity problems. Arch. Appl. Mech. 87, 1213–1226 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. U1909217, U1709208), the ZJNSF (No. LD21E050001) and the Zhejiang Special Support Program for High-level Personnel Recruitment of China (No. 2018R52034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiawei Xiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Q., Xiang, J. B-spline wavelet boundary element method for three-dimensional problems. Acta Mech 232, 3233–3257 (2021). https://doi.org/10.1007/s00707-021-03009-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-021-03009-1

Navigation