Skip to main content
Log in

Liquid Chromatography–High-Resolution Mass Spectrometry with ROI Strategy for Non-targeted Analysis of the In Vivo/In Vitro Ingredients Coming from Ligusticum chuanxiong hort

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Mass spectral resolution for clean mass spectra is a very challenging task in non-targeted hyphenated techniques, especially for massive amounts of such data from herbs. In this work, the regions of interest (ROI) strategy was used to compress liquid chromatography–high-resolution mass spectrometry (LC–HRMS) data. For single or overlapped peaks, a rule of “first in, first out” was intended for visual recognition of features that could be of relevance in ROI curves. In the light of the two embedded peaks in a local segment, an improved selective ion analysis after ROI compression (ROI–SIA) possesses the main advantages of being rapid, automatic and parameter free. From the clean mass spectra above, we can estimate their correct feature sets that belong to the same compound. Tandem MS spectra were further determined, and peak annotations were rediscovered in known natural products by the interpretation of known MS/MS fragmentations. These procedures were tested in the analysis of the LC–HR–MS data coming from phytochemicals in Ligusticum chuanxiong with satisfactory results. The in vivo prototypes were also characterized in mice plasma after oral administration of the herbal extract. These analytical results provide an important basis for the identification of active ingredients, also used for a further investigation on the efficacy of different technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cheng X, Chen B, Pan Y, Guo L, Feng W, Dong Y (2018) Chromatographia 81:157–165. https://doi.org/10.1007/s10337-017-3446-4

    Article  CAS  Google Scholar 

  2. Gorrochategui E, Jaumot J, Lacorte S, Tauler R (2016) TrAC Trend Anal Chem 82:425–442. https://doi.org/10.1016/j.trac.2016.07.004

    Article  CAS  Google Scholar 

  3. He M, Lv HY, Li YP, Vicente Gonçalves CM, Dong NP, Pan LS, Liu PL, Liang YZ (2014) Anal Methods 6:2239–2246. https://doi.org/10.1039/c3ay41861h

    Article  CAS  Google Scholar 

  4. Tao J, Zhao M, Jiang S, Zhang W, Xu B, Duan J (2018) J Pharmaceut Biomed 161:254–261. https://doi.org/10.1016/j.jpba.2018.08.051

    Article  CAS  Google Scholar 

  5. Yang Y, Yin XJ, Guo HM, Wang RL, Song R, Tian Y, Zhang ZJ (2014) Chin J Nat Med 12:542–553. https://doi.org/10.1016/S1875-5364(14)60084-4

    Article  CAS  PubMed  Google Scholar 

  6. Forsberg EM, Huan T, Rinehart D, Benton HP, Warth B, Hilmers B, Siuzdak G (2018) Nat Protoc 13:633–651. https://doi.org/10.1038/nprot.2017.151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lommen A (2012) Metabolomics 8:719–726. https://doi.org/10.1007/s11306-011-0369-1

    Article  CAS  PubMed  Google Scholar 

  8. Pluskal T, Castillo S, Villar-Briones A, Orešič M (2010) BMC Bioinform 11:395. https://doi.org/10.1186/1471-2105-11-395

    Article  CAS  Google Scholar 

  9. Lima KMG, Bedia C, Tauler R (2014) Microchem J 117:255–261. https://doi.org/10.1016/j.microc.2014.07.010

    Article  CAS  Google Scholar 

  10. Dalmau N, Bedia C, Tauler R (2018) Anal Chim Acta 1025:80–91. https://doi.org/10.1016/j.aca.2018.04.003

    Article  CAS  PubMed  Google Scholar 

  11. Gorrochategui E, Jaumot J, Lacorte S, Tauler R (2016) TrAC Trend Anal Chem 82:425–442. https://doi.org/10.1016/j.trac.2016.07.004

    Article  CAS  Google Scholar 

  12. Jaumot J, Juan A, Tauler R (2015) Chemom Intell Lab Sys 140:1–12. https://doi.org/10.1016/j.chemolab.2014.10.003

    Article  CAS  Google Scholar 

  13. He M, Wu H, Nie J, Yan P, Yang T, Yang Z, Pei R (2017) J Pharm Biomed Anal 146:37–47. https://doi.org/10.1016/j.jpba.2017.07.065

    Article  CAS  PubMed  Google Scholar 

  14. Li CM, Guo YQ, Dong XL, Li H, Wang B, Wu JH, Wong MS, Chan SW (2014) Food Funct 5:2475–2485. https://doi.org/10.1039/c4fo00211c

    Article  CAS  PubMed  Google Scholar 

  15. Zeng Z, Xie R, Tan L, Zhang T (2011) Chin J Appl Chem 28:956–962. https://doi.org/10.1090/s0002-9939-2011-10775-5

    Article  CAS  Google Scholar 

  16. Chi Y, Zhang Z, Li C, Liu Q, Yan P, Welz-Biermann U (2011) Green Chem 13:666–670. https://doi.org/10.1039/c0gc00864h

    Article  CAS  Google Scholar 

  17. Li HB, Chen F (2004) J Chromatogr A 1047:249–253. https://doi.org/10.1016/s0021-9673(04)01103-3

    Article  CAS  PubMed  Google Scholar 

  18. Sun YY, Li SF, Song HT, Tian SJ (2006) Chem Eng 34:60–63. https://doi.org/10.1007/s10589-005-3075-y

    Article  CAS  Google Scholar 

  19. Gorrochategui E, Jaumot J, Tauler R (2015) Protocol Exchange. https://doi.org/10.1038/protex.2015.102

    Article  Google Scholar 

  20. Kind T, Fiehn O (2007) BMC Bioinform 8:105. https://doi.org/10.1186/1471-2105-8-105

    Article  CAS  Google Scholar 

  21. Kind T, Fiehn O (2010) Bioanal Rev 2:23–60. https://doi.org/10.1007/s12566-010-0015-9

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhang Q, Huo M, Zhang Y, Qiao Y, Gao X (2018) J Chromatogra A 1552:17–28. https://doi.org/10.1016/j.chroma.2018.03.055

    Article  CAS  Google Scholar 

  23. Chen Z, Zhang C, Gao F, Fu Q, Fu C, He Y, Zhang J (2018) Food Chem Toxicol 119:309–325. https://doi.org/10.1016/j.fct.2018.02.050

    Article  CAS  PubMed  Google Scholar 

  24. Yan R, Ko NL, Li SL, Tam YK, Lin G (2008) Pharmacokinetics and metabolism of ligustilide, a major bioactive component in Rhizoma Chuanxiong in the rat. Drug Metab Dispos 36:400–408. https://doi.org/10.1124/dmd.107.017707

    Article  CAS  PubMed  Google Scholar 

  25. He M, Yan P, Yang ZY, Zhang ZM, Yang TB, Hong L (2018) J Chromatogra B 1079:41–50. https://doi.org/10.1016/j.jchromb.2018.01.040

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by Hunan 2011 Collaborative Innovation Center of Chemical Engineering & Technology with Environmental Benignity and Effective Resource Utilization, Hunan Province Natural Science Fund (no. 2016JJ4085), the key project of Hunan Provincial Education Department (18A055). The study met the approval of the university’s review board.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min He.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 36 kb)

Supplementary material 2 (DOC 72 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, M., Peng, G., Xie, F. et al. Liquid Chromatography–High-Resolution Mass Spectrometry with ROI Strategy for Non-targeted Analysis of the In Vivo/In Vitro Ingredients Coming from Ligusticum chuanxiong hort. Chromatographia 82, 1069–1077 (2019). https://doi.org/10.1007/s10337-019-03740-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-019-03740-x

Keywords

Navigation