Skip to main content
Log in

Insights into the Retention Mechanism of Small Neutral Compounds on Octylsiloxane-Bonded and Diisobutyloctadecylsiloxane-Bonded Silica Stationary Phases in Reversed-Phase Liquid Chromatography

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

The system constants of the solvation parameter model are used to prepare system maps for the retention of small neutral compounds on an octylsiloxane-bonded (Kinetex C8) and diisobutyloctadecylsiloxane-bonded (Kinetex XB-C18) superficially porous silica stationary phases for aqueous mobile phases containing 10–70% (v/v) methanol or acetonitrile. Electrostatic interactions (cation-exchange) are important for the retention of weak bases with acetonitrile–water but not for methanol–water mobile phases. Compared with an octadecylsiloxane-bonded silica stationary phase (Kinetex C18) retention is reduced due to a less favorable phase ratio for both the octylsiloxane-bonded and diisobutyloctadecylsiloxane-bonded silica stationary phases while selectivity differences are small and solvent dependent. Selectivity differences for neutral compounds are larger for methanol–water but significantly suppressed for acetonitrile–water mobile phases. The selectivity differences arise from small changes in all system constants with solute size and hydrogen-bond basicity being the most important due to their dominant contribution to the retention mechanism. Exchanging the octadecylsiloxane-bonded silica column for either the octylsiloxane-bonded or diisobutyloctadecylsiloxane-bonded silica column affords little scope for extending the selectivity space and is restricted to fine tuning of separations, and in some cases, to obtain faster separations due to a more favorable phase ratio. For weak bases larger differences in relative retention are expected with acetonitrile–water mobile phases on account of the additional cation exchange interactions possible that are absent for the octadecylsiloxane-bonded silica stationary phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Fanali S, Haddad PR, Poole CF, Riekkola ML (eds) (2017) Liquid chromatography: fundamentals and instrumentation, 2n edn. Elsevier, Amsterdam

    Google Scholar 

  2. Snyder LR, Kirkland JJ, Dolan JW (2009) Introduction to modern liquid chromatography, 3rd edn. Wiley-Blackwell, Hoboken

    Book  Google Scholar 

  3. Snyder LR, Dolan JW, Marchand DA, Carr PW (2015) The hydrophobic subtraction model of reversed-phase column selectivity. Adv Chromatogr 50:297–376

    Google Scholar 

  4. Poole CF, Lenca N (2017) Applications of the solvation parameter model in reversed-phase liquid chromatography. J Chromatogr A 1486:2–19

    Article  CAS  Google Scholar 

  5. Poole CF, Poole SK (2002) Column selectivity from the perspective of the solvation parameter model. J Chromatogr A 965:263–299

    Article  CAS  Google Scholar 

  6. Coym JW (2010) Evaluation of ternary mobile phases for reversed-phase liquid chromatography. Effect of composition on retention mechanism. J Chromatogr A 1217:5957–5964

    Article  CAS  Google Scholar 

  7. Szepesy L (2003) Evaluation of column characteristics in RPLC using linear solvation energy relationships (LSERs). J Sep Sci 26:201–214

    Article  CAS  Google Scholar 

  8. Kiridena W, Atapattu SN, Poole CF, Koziol WW (2008) Comparison of the separation characteristics of the organic-inorganic hybrid stationary phases XBridge C8 and Phenyl and XTerra Phenyl in RP-LC. Chromatographia 68:491–500

    Article  CAS  Google Scholar 

  9. Jandera P, Vynuchalova K, Necilova K (2013) Combined effects of mobile phase composition and temperature on the retention of phenolic antioxidants on an octylsilica polydentate column. J Chromatogr A 1317:49–58

    Article  CAS  Google Scholar 

  10. Kirkland JJ (2004) Development of some stationary phases for reversed-phase high-performance liquid chromatography. J Chromatogr A 1060:9–21

    Article  CAS  Google Scholar 

  11. Claessens HA, van Straten MA (2004) Review on the chemical and thermal stability of stationary phases for reversed-phase liquid chromatography. J Chromatogr A 1060:23–41

    Article  CAS  Google Scholar 

  12. Haun J, Oeste K, Teutenberg T, Schmidt TC (2012) Long-term high-temperature and pH stability assessment of modern commercially available stationary phases by using retention factor analysis. J Chromatogr A 1263:99–107

    Article  CAS  Google Scholar 

  13. Borges EM, Euerby MR (2013) An appraisal of the chemical and thermal stability of silica based reverse-phase liquid chromatographic stationary phases employed within the pharmaceutical environment. J Pharm Biomed Anal 77:100–115

    Article  CAS  Google Scholar 

  14. Poole CF (2015) An interphase model for retention in liquid chromatography. J Planar Chromatogr 28:98–105

    Article  CAS  Google Scholar 

  15. Lesellier E, West C (2007) Description and comparison of chromatographic methods for packed column classification. J Chromatogr A 1158:329–360

    Article  CAS  Google Scholar 

  16. Tan LC, Carr PW, Abraham MH (1996) Study of retention in reversed-phase liquid chromatography using linear solvation energy relationships. 1. The stationary phase. J Chromatogr A 752:1–18

    Article  CAS  Google Scholar 

  17. Buntz S, Figus M, Liu Z, Kazakevich YV (2012) Excess adsorption of binary aqueous organic mixtures on various reversed-phase packing materials. J Chromatogr A 1240:104–112

    Article  CAS  Google Scholar 

  18. Rafferty JL, Siepmann JI, Schure MR (2012) A molecular simulation study of the effects of stationary phase and solute chain length in reversed-phase liquid chromatography. J Chromatogr A 1223:24–34

    Article  CAS  Google Scholar 

  19. Rafferty JL, Siepmann JI, Schure MR (2009) The effect of chain length, embedded polar groups, pressure and pore shape on retention in reversed-phase liquid chromatography: molecular level insights from Monte Carlo simulations. J Chromatogr A 1216:2320–2331

    Article  CAS  Google Scholar 

  20. Abraham MH, Ibrahim A, Zissmos AM (2004) Determination of sets of solute descriptors from chromatographic measurements. J Chromatogr A 1037:29–47

    Article  CAS  Google Scholar 

  21. Vitha MF, Carr PW (2006) The chemical interpretation and practice of linear solvation energy relationships in chromatography. J Chromatogr A 1126:143–194

    Article  CAS  Google Scholar 

  22. Poole CF, Atapattu SN, Poole SK, Bell AN (2009) Determination of solute descriptors by chromatographic methods. Anal Chim Acta 652:32–53

    Article  CAS  Google Scholar 

  23. Poole CF, Ariyasena TC, Lenca N (2013) Estimation of the environmental properties of compounds from chromatographic measurements and the solvation parameter model. J Chromatogr A 1317:85–104

    Article  CAS  Google Scholar 

  24. Li J, Rethwell PA (2004) Systematic selection of internal standard with similar chemical and UV properties to drug to be quantified in serum samples. Chromatographia 60:391–397

    Article  CAS  Google Scholar 

  25. Li J (2005) Evaluation of a semi-empirical approach to correlation of retention with octanol–water partition coefficients by use of adjustable hydrogen-bonding indicator variables. Chromatographia 61:479–492

    Article  CAS  Google Scholar 

  26. Li Q, Poole CF (2000) Influence of interfacial adsorption on the system constants of the solvation parameter model in gas–liquid chromatography. Chromatographia 52:639–647

    Article  CAS  Google Scholar 

  27. Poole CF (2005) Models for the adsorption of organic compounds at gas–water interfaces. J Environ Monit 7:577–580

    Article  CAS  Google Scholar 

  28. Abraham MH, Poole CF, Poole SK (1999) Classification of stationary phases and other materials by gas chromatography. J Chromatogr A 842:79–114

    Article  CAS  Google Scholar 

  29. Kiridena W, Poole CF (1998) Influence of solute size and site-specific surface interactions on the prediction of retention in liquid chromatography using the solvation parameter model. Analyst 123:1265–1270

    Article  CAS  Google Scholar 

  30. Poole CF, Poole SK (2009) Foundations of retention in partition chromatography. J Chromatogr A 1216:1530–1550

    Article  CAS  Google Scholar 

  31. Atapattu SN, Poole CF, Praseuth MB (2017) Insights into the retention mechanism for small neutral compounds on silica-based phenyl phases in reversed-phase liquid chromatography. Chromatographia. https://doi.org/10.1007/s10337-017-3451-7

    Google Scholar 

  32. Lenca N, Poole CF (2015) A system map for the ionic liquid stationary phase 1,9-di(3-vinylimidazolium)nonane bis(trifluoromethylsulfonyl)imide for gas chromatography. Chromatographia 78:81–88

    Article  CAS  Google Scholar 

  33. Atapattu SN, Poole CF, Praseuth MB (2016) System maps for retention of small neutral compounds on a superficially porous particle column in reversed-phase liquid chromatography. J Chromatogr A 1468:250–256

    Article  CAS  Google Scholar 

  34. Atapattu SN, Poole CF, Praseuth MB (2016) System maps for retention of small neutral compounds on a biphenylsiloxane-bonded silica stationary phase in reversed-phase liquid chromatography. J Chromatogr A 1478:250–256

    Article  Google Scholar 

  35. Atapattu SN, Poole CF, Praseuth MB (2017) System maps for retention of small neutral compounds on a superficially porous ethyl-bridged octadecylsiloxane-bonded silica stationary phase in reversed-phase liquid chromatography. Chromatographia 80:1279–1286

    Article  CAS  Google Scholar 

  36. Poole CF, Ahmed H, Kiridena W, DeKay C, Koziol WW (2005) Contribution of steric repulsion to retention on an octadecylsiloxane-bonded silica stationary phase in reversed-phase liquid chromatography. Chromatographia 62:553–561

    Article  CAS  Google Scholar 

  37. Carr PW, Dolan JW, Neue UD, Snyder LR (2011) Contributions to reversed-phase column selectivity. 1. Steric interaction. J Chromatogr A 1218:1724–1742

    Article  CAS  Google Scholar 

  38. Walter TH, Iraneta P, Capparella P (2005) Mechanism of retention loss when C8 and C18 HPLC columns are used with highly aqueous mobile phases. J Chromatogr A 1075:177–183

    Article  CAS  Google Scholar 

  39. Imran A, Al-Othman ZA, Nagae N, Gaitonde VD, Dutta KK (2012) Recent trends in ultra-fast HPLC. New generation superficially porous silica columns. J Sep Sci 35:3235–3249

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin F. Poole.

Ethics declarations

Conflict of interest

Authors Atapattu and Poole have no conflict of interest. Author Praseuth is an employee of Phenomenex who manufactured the column used in this study. Authors Atapattu and Poole received no financial support from Phenomenex for this study.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atapattu, S.N., Poole, C.F. & Praseuth, M.B. Insights into the Retention Mechanism of Small Neutral Compounds on Octylsiloxane-Bonded and Diisobutyloctadecylsiloxane-Bonded Silica Stationary Phases in Reversed-Phase Liquid Chromatography. Chromatographia 81, 373–385 (2018). https://doi.org/10.1007/s10337-017-3454-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-017-3454-4

Keywords

Navigation