Skip to main content

Advertisement

Log in

Chromatography of Quorum Sensing Peptides: An Important Functional Class of the Bacterial Peptidome

  • Review
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Quorum sensing is the process by which bacteria communicate with each other to regulate the expression of certain genes in a cell density-dependent manner. One group of signalling molecules used in this process are the quorum sensing peptides, which are primarily produced by Gram-positive bacteria. Aside from their known role in bacterial physiology, it was recently found that these peptides are also able to influence human cells in a direct or indirect manner. To fully elucidate their biological and clinical significance in the microbiome, the ability to detect and quantify these active peptides in cell media and in vivo is of utmost importance. Several different methods, primarily for bacterial cell culture media, have already been developed. Standard procedure employs traditional techniques such as solid-phase extraction during sample preparation, a critical step in the analysis. A suitable sample preparation to extract the entire peptidome, prior to untargeted mass spectrometry detection, has not yet been proposed. Following sample preparation, liquid chromatography is coupled with different detection methods with mass spectrometry as the most commonly used. The aim of this review is to summarise and critically discuss current analytical methods for quorum sensing peptide identification and quantification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ACN:

Acetonitrile

ABC:

ATP-binding cassette

AHL:

Acyl-homoserine lactone derivatives

AI-2:

Autoinducer-2

AIP:

Autoinducing peptide

CIA:

Clumping-inducing agent

CSP:

Competence stimulating peptide

ESI:

Electospray ionisation

FA:

Formic acid

HPLC:

High performance liquid chromatography

HILIC:

Hydrophilic interaction chromatography

IEX:

Ion-exchange chromatography

LoD:

Limit of detection

LTQ:

Linear-quadrupole ion trap-orbitrap

MALDI:

Matrix-assisted laser desorption/ionisation

MS:

Mass spectrometry

Opp:

Oligopeptide permease system

QS:

Quorum sensing

QSP:

Quorum sensing peptide

RP:

Reverse phase

SPE:

Solid-phase extraction

TOF:

Time-of-flight

TFA:

Trifluoroacetic acid

References

  1. Martin CA, Hoven AD, Cook AM (2008) Therapeutic frontiers: preventing and treating infectious diseases by inhibiting bacterial quorum sensing. Eur J Clin Microbiol Infect Dis 27(8):635–642

    Article  CAS  PubMed  Google Scholar 

  2. Nealson KH, Platt T, Hastings JW (1970) Cellular control of the synthesis and activity of the bacterial luminescent system. J Bacteriol 104(1):313–322

    CAS  PubMed  PubMed Central  Google Scholar 

  3. De Sordi L, Muhlschlegel FA (2009) Quorum sensing and fungal–bacterial interactions in Candida albicans: a communicative network regulating microbial coexistence and virulence. FEMS Yeast Res 9(7):990–999

    Article  CAS  PubMed  Google Scholar 

  4. Zumstein V, Betschart P, Albrich WC, Buhmann MT, Ren Q, Schmid HP, Abt D (2017) Biofilm formation on ureteral stents—Incidence, clinical impact, and prevention. Swiss Med Wkly 147:w14408

    PubMed  Google Scholar 

  5. Rodney J, Ojano-Dirain CP, Antonelli PJ, Silva RC (2016) Effect of repeated tracheostomy tube reprocessing on biofilm formation. Laryngoscope 126(4):996–999

    Article  CAS  PubMed  Google Scholar 

  6. Lazar V (2011) Quorum sensing in biofilms—how to destroy the bacterial citadels or their cohesion/power? Anaerobe 17(6):280–285

    Article  PubMed  Google Scholar 

  7. LaSarre B, Federle MJ (2013) Exploiting quorum sensing to confuse bacterial pathogens. Microbiol Mol Biol Rev MMBR 77(1):73–111

    Article  CAS  PubMed  Google Scholar 

  8. Winzer K, Hardie KR, Williams P (2002) Bacterial cell-to-cell communication: sorry, can’t talk now—gone to lunch! Curr Opin Microbiol 5(2):216–222

    Article  CAS  PubMed  Google Scholar 

  9. Garg N, Manchanda G, Kumar A (2014) Bacterial quorum sensing: circuits and applications. Anton Leeuw Int J G 105(2):289–305

    Article  Google Scholar 

  10. Morin D, Grasland B, Vallee-Rehel K, Dufau C, Haras D (2003) On-line high-performance liquid chromatography-mass spectrometric detection and quantification of N-acylhomoserine lactones, quorum sensing signal molecules, in the presence of biological matrices. J Chromatogr A 1002(1–2):79–92

    Article  CAS  PubMed  Google Scholar 

  11. Thiel V, Vilchez R, Sztajer H, Wagner-Dobler I, Schulz S (2009) Identification, quantification, and determination of the absolute configuration of the bacterial quorum-sensing signal autoinducer-2 by gas chromatography–mass spectrometry. ChemBioChem 10(3):479–485

    Article  CAS  PubMed  Google Scholar 

  12. Chen X, Schauder S, Potier N, Van Dorsselaer A, Pelczer I, Bassler BL, Hughson FM (2002) Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415(6871):545–549

    Article  CAS  PubMed  Google Scholar 

  13. Verbeke F, De Craemer S, Debunne N, Janssens Y, Wynendaele E, Van de Wiele C, De Spiegeleer B (2017) Peptides as quorum sensing molecules: measurement techniques and obtained levels in vitro and in vivo. Front Neurosci 11:183

    Article  PubMed  PubMed Central  Google Scholar 

  14. Aardema MJ, MacGregor JT (2002) Toxicology and genetic toxicology in the new era of “toxicogenomics”: impact of “-omics” technologies. Mutat Res 499(1):13–25

    Article  CAS  PubMed  Google Scholar 

  15. Cisek K, Krochmal M, Klein J, Mischak H (2016) The application of multi-omics and systems biology to identify therapeutic targets in chronic kidney disease. Nephrol Dial Transplant 31(12):2003–2011

    Article  PubMed  Google Scholar 

  16. Lindon JC, Holmes E, Nicholson JK (2004) Metabonomics and its role in drug development and disease diagnosis. Expert Rev Mol Diagn 4(2):189–199

    Article  CAS  PubMed  Google Scholar 

  17. Matthews H, Hanison J, Nirmalan N (2016) “Omics”-informed drug and biomarker discovery: opportunities, challenges and future perspectives. Proteomes 4(3):28

    Article  PubMed Central  Google Scholar 

  18. Brown DG, Rao S, Weir TL, O’Malia J, Bazan M, Brown RJ, Ryan EP (2016) Metabolomics and metabolic pathway networks from human colorectal cancers, adjacent mucosa, and stool. Cancer Metab 4:11

    Article  PubMed  PubMed Central  Google Scholar 

  19. Belogurov AA Jr, Ivanova OM, Lomakin YA, Ziganshin RH, Vaskina MI, Knorre VD, Klimova EA, Gabibov AG, Ivanov VT, Govorun VM (2016) Mediators and biomarkers of inflammation in meningitis: cytokine and peptidome profiling of cerebrospinal fluid. Biochemistry 81(11):1293–1302

    CAS  PubMed  Google Scholar 

  20. Kononikhin AS, Starodubtseva NL, Bugrova AE, Shirokova VA, Chagovets VV, Indeykina MI, Popov IA, Kostyukevich YI, Vavina OV, Muminova KT, Khodzhaeva ZS, Kan NE, Frankevich VE, Nikolaev EN, Sukhikh GT (2016) An untargeted approach for the analysis of the urine peptidome of women with preeclampsia. J Proteomics 149:38–43

    Article  CAS  PubMed  Google Scholar 

  21. Nicholson JK, Lindon JC (2008) Systems biology: metabonomics. Nature 455(7216):1054–1056

    Article  CAS  PubMed  Google Scholar 

  22. Blanco-Miguez A, Gutierrez-Jacome A, Fdez-Riverola F, Lourenco A, Sanchez B (2016) A peptidome-based phylogeny pipeline reveals differential peptides at the strain level within Bifidobacterium animalis subsp. lactis. Food Microbiol 60:137–141

    Article  CAS  PubMed  Google Scholar 

  23. Mesuere B, Devreese B, Debyser G, Aerts M, Vandamme P, Dawyndt P (2012) Unipept: tryptic peptide-based biodiversity analysis of metaproteome samples. J Proteome Res 11(12):5773–5780

    Article  CAS  PubMed  Google Scholar 

  24. Tsuchiya T, Osaki T, Minamino N, Sasaki K (2015) Peptidomics for studying limited proteolysis. J Proteome Res 14(11):4921–4931

    Article  CAS  PubMed  Google Scholar 

  25. Trost B, Kusalik A, Lucchese G, Kanduc D (2010) Bacterial peptides are intensively present throughout the human proteome. Self Nonself 1(1):71–74

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cusick MF, Libbey JE, Fujinami RS (2012) Molecular mimicry as a mechanism of autoimmune disease. Clin Rev Allergy Immunol 42(1):102–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Minkiewicz P, Dziuba J, Iwaniak A, Dziuba M, Darewicz M (2008) BIOPEP database and other programs for processing bioactive peptide sequences. J AOAC Int 91(4):965–980

    CAS  PubMed  Google Scholar 

  28. Tulini FL, Lohans CT, Bordon KC, Zheng J, Arantes EC, Vederas JC, De Martinis EC (2014) Purification and characterization of antimicrobial peptides from fish isolate Carnobacterium maltaromaticum C2: carnobacteriocin X and carnolysins A1 and A2. Int J Food Microbiol 173:81–88

    Article  CAS  PubMed  Google Scholar 

  29. Wynendaele E, Bronselaer A, Nielandt J, D’Hondt M, Stalmans S, Bracke N, Verbeke F, Van De Wiele C, De Tre G, De Spiegeleer B (2013) Quorumpeps database: chemical space, microbial origin and functionality of quorum sensing peptides. Nucleic Acids Res. 41(Database issue):D655–D659

    Article  CAS  PubMed  Google Scholar 

  30. Desiere F, Deutsch EW, King NL, Nesvizhskii AI, Mallick P, Eng J, Chen S, Eddes J, Loevenich SN, Aebersold R (2006) The PeptideAtlas project. Nucleic Acids Res 34(Database issue):D655–D658

    Article  CAS  PubMed  Google Scholar 

  31. Lin DY, Huang S, Chen J (2015) Crystal structures of a polypeptide processing and secretion transporter. Nature 523(7561):425–430

    Article  CAS  PubMed  Google Scholar 

  32. Maio A, Brandi L, Donadio S, Gualerzi CO (2016) The oligopeptide permease Opp mediates illicit transport of the bacterial P-site decoding inhibitor GE81112. Antibiotics (Basel) 5(2):17

    Article  CAS  Google Scholar 

  33. Mendonca ML, Szamosi JC, Lacroix AM, Fontes ME, Bowdish DM, Surette MG (2016) The sil locus in Streptococcus anginosus group: interspecies competition and a hotspot of genetic diversity. Front Microbiol 7:2156

    PubMed  Google Scholar 

  34. Talagas A, Fontaine L, Ledesma-Garcia L, Mignolet J (2016) Structural insights into streptococcal competence regulation by the cell-to-cell communication system ComRS. PLoS Pathog 12(12):e1005980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Homer CM, Summers DK, Goranov AI, Clarke SC, Wiesner DL, Diedrich JK, Moresco JJ, Toffaletti D, Upadhya R, Caradonna I, Petnic S, Pessino V, Cuomo CA, Lodge JK, Perfect J, Yates JR 3rd, Nielsen K, Craik CS, Madhani HD (2016) Intracellular action of a secreted peptide required for fungal virulence. Cell Host Microbe 19(6):849–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bassler BL, Losick R (2006) Bacterially speaking. Cell 125(2):237–246

    Article  CAS  PubMed  Google Scholar 

  37. Novick RP, Geisinger E (2008) Quorum sensing in staphylococci. Annu Rev Genet 42:541–564

    Article  CAS  PubMed  Google Scholar 

  38. Kolodkin-Gal I, Hazan R, Gaathon A, Carmeli S, Engelberg-Kulka H (2007) A linear pentapeptide is a quorum-sensing factor required for mazEF-mediated cell death in Escherichia coli. Science 318(5850):652–655

    Article  CAS  PubMed  Google Scholar 

  39. Kumar S, Kolodkin-Gal I, Engelberg-Kulka H (2013) Novel quorum-sensing peptides mediating interspecies bacterial cell death. MBio 4(3):e00314-00313

    Article  CAS  Google Scholar 

  40. Erny D, Hrabe de Angelis AL, Prinz M (2017) Communicating systems in the body: how microbiota and microglia cooperate. Immunology 150(1):7–15

    Article  CAS  PubMed  Google Scholar 

  41. Lyte M, Ernst S (1993) Alpha and beta adrenergic receptor involvement in catecholamine-induced growth of gram-negative bacteria. Biochem Biophys Res Commun 190(2):447–452

    Article  CAS  PubMed  Google Scholar 

  42. Forsythe P, Kunze WA (2013) Voices from within: gut microbes and the CNS. Cell Mol Life Sci 70(1):55–69

    Article  CAS  PubMed  Google Scholar 

  43. Darkoh C, DuPont HL, Norris SJ, Kaplan HB (2015) Toxin synthesis by Clostridium difficile is regulated through quorum signaling. MBio 6(2):e02569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Voth DE, Ballard JD (2005) Clostridium difficile toxins: mechanism of action and role in disease. Clin Microbiol Rev 18(2):247–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jarraud S, Mougel C, Thioulouse J, Lina G, Meugnier H, Forey F, Nesme X, Etienne J, Vandenesch F (2002) Relationships between Staphylococcus aureus genetic background, virulence factors, agr groups (alleles), and human disease. Infect Immun 70(2):631–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fujiya M, Musch MW, Nakagawa Y, Hu S, Alverdy J, Kohgo Y, Schneewind O, Jabri B, Chang EB (2007) The Bacillus subtilis quorum-sensing molecule CSF contributes to intestinal homeostasis via OCTN2, a host cell membrane transporter. Cell Host Microbe 1(4):299–308

    Article  CAS  PubMed  Google Scholar 

  47. Wynendaele E, Verbeke F, D’Hondt M, Hendrix A, Van De Wiele C, Burvenich C, Peremans K, De Wever O, Bracke M, De Spiegeleer B (2015) Crosstalk between the microbiome and cancer cells by quorum sensing peptides. Peptides 64:40–48

    Article  CAS  PubMed  Google Scholar 

  48. De Spiegeleer B, Verbeke F, D’Hondt M, Hendrix A, Van De Wiele C, Burvenich C, Peremans K, De Wever O, Bracke M, Wynendaele E (2015) The quorum sensing peptides PhrG, CSP and EDF promote angiogenesis and invasion of breast cancer cells in vitro. PLoS One 10(3):e0119471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dittrich J, Becker S, Hecht M, Ceglarek U (2015) Sample preparation strategies for targeted proteomics via proteotypic peptides in human blood using liquid chromatography tandem mass spectrometry. Proteomics Clin Appl 1–2:5–16

    Article  CAS  Google Scholar 

  50. Mesmin C, Domon B (2014) Improvement of the performance of targeted LC–MS assays through enrichment of histidine-containing peptides. J Proteome Res 13(12):6160–6168

    Article  CAS  PubMed  Google Scholar 

  51. Sigdel TK, Nicora CD, Hsieh SC, Dai H, Qian WJ, Camp DG 2nd, Sarwal MM (2014) Optimization for peptide sample preparation for urine peptidomics. Clin Proteomics 11(1):7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tubaon RM, Haddad PR, Quirino JP (2017) Sample clean-up strategies for electrospray ionization mass spectrometry applications in bottom-up proteomics: trends from 2012–2016. Proteomics. doi:10.1002/pmic.201700011

    Article  PubMed  Google Scholar 

  53. Smirnov KS, Maier TV, Walker A, Heinzmann SS, Forcisi S, Martinez I, Walter J, Schmitt-Kopplin P (2016) Challenges of metabolomics in human gut microbiota research. Int J Med Microbiol 306(5):266–279

    Article  CAS  PubMed  Google Scholar 

  54. Amado F, Lobo MJ, Domingues P, Duarte JA, Vitorino R (2010) Salivary peptidomics. Expert Rev Proteomics 7(5):709–721

    Article  CAS  PubMed  Google Scholar 

  55. Messana I, Inzitari R, Fanali C, Cabras T, Castagnola M (2008) Facts and artifacts in proteomics of body fluids. What proteomics of saliva is telling us? J Sep Sci 31(11):1948–1963

    Article  CAS  PubMed  Google Scholar 

  56. Finoulst I, Pinkse M, Van Dongen W, Verhaert P (2011) Sample preparation techniques for the untargeted LC–MS-based discovery of peptides in complex biological matrices. J Biomed Biotechnol 2011:245291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Svensson M, Skold K, Nilsson A, Falth M, Svenningsson P, Andren PE (2007) Neuropeptidomics: expanding proteomics downwards. Biochem Soc Trans 35(Pt 3):588–593

    Article  CAS  PubMed  Google Scholar 

  58. Good DM, Zurbig P, Argiles A, Bauer HW, Behrens G, Coon JJ, Dakna M, Decramer S, Delles C, Dominiczak AF, Ehrich JH, Eitner F, Fliser D, Frommberger M, Ganser A, Girolami MA, Golovko I, Gwinner W, Haubitz M, Herget-Rosenthal S, Jankowski J, Jahn H, Jerums G, Julian BA, Kellmann M, Kliem V, Kolch W, Krolewski AS, Luppi M, Massy Z, Melter M, Neususs C, Novak J, Peter K, Rossing K, Rupprecht H, Schanstra JP, Schiffer E, Stolzenburg JU, Tarnow L, Theodorescu D, Thongboonkerd V, Vanholder R, Weissinger EM, Mischak H, Schmitt-Kopplin P (2010) Naturally occurring human urinary peptides for use in diagnosis of chronic kidney disease. Mol Cell Proteomics 9(11):2424–2437

    Article  PubMed  PubMed Central  Google Scholar 

  59. Tucholska M, Scozzaro S, Williams D, Ackloo S, Lock C, Siu KW, Evans KR, Marshall JG (2007) Endogenous peptides from biophysical and biochemical fractionation of serum analyzed by matrix-assisted laser desorption/ionization and electrospray ionization hybrid quadrupole time-of-flight. Anal Biochem 370(2):228–245

    Article  CAS  PubMed  Google Scholar 

  60. Chertov O, Biragyn A, Kwak LW, Simpson JT, Boronina T, Hoang VM, Prieto DA, Conrads TP, Veenstra TD, Fisher RJ (2004) Organic solvent extraction of proteins and peptides from serum as an effective sample preparation for detection and identification of biomarkers by mass spectrometry. Proteomics 4(4):1195–1203

    Article  CAS  PubMed  Google Scholar 

  61. Polson C, Sarkar P, Incledon B, Raguvaran V, Grant R (2003) Optimization of protein precipitation based upon effectiveness of protein removal and ionization effect in liquid chromatography-tandem mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci 785(2):263–275

    Article  CAS  Google Scholar 

  62. Esposito S, Mele R, Ingenito R, Bianchi E, Bonelli F, Monteagudo E, Orsatti L (2017) An efficient liquid chromatography-high resolution mass spectrometry approach for the optimization of the metabolic stability of therapeutic peptides. Anal Bioanal Chem 409(10):2685–2696

    Article  CAS  PubMed  Google Scholar 

  63. Di Meo A, Batruch I, Yousef AG, Pasic MD, Diamandis EP, Yousef GM (2017) An integrated proteomic and peptidomic assessment of the normal human urinome. Clin Chem Lab Med 55(2):237–247

    PubMed  Google Scholar 

  64. Greening DW, Simpson RJ (2010) A centrifugal ultrafiltration strategy for isolating the low-molecular weight (< or = 25 K) component of human plasma proteome. J Proteomics 73(3):637–648

    Article  CAS  PubMed  Google Scholar 

  65. Orvisky E, Drake SK, Martin BM, Abdel-Hamid M, Ressom HW, Varghese RS, An Y, Saha D, Hortin GL, Loffredo CA, Goldman R (2006) Enrichment of low molecular weight fraction of serum for MS analysis of peptides associated with hepatocellular carcinoma. Proteomics 6(9):2895–2902

    Article  CAS  PubMed  Google Scholar 

  66. Zheng X, Baker H, Hancock WS (2006) Analysis of the low molecular weight serum peptidome using ultrafiltration and a hybrid ion trap-Fourier transform mass spectrometer. J Chromatogr A 1120(1–2):173–184

    Article  CAS  PubMed  Google Scholar 

  67. Sobhi HR, Vatansever B, Wortmann A, Grouzmann E, Rochat B (2011) Generic approach for the sensitive absolute quantification of large undigested peptides in plasma using a particular liquid chromatography-mass spectrometry setup. J Chromatogr A 1218(47):8536–8543

    Article  CAS  PubMed  Google Scholar 

  68. Semenistaya E, Zvereva I, Krotov G, Rodchenkov G (2016) Solid-phase extraction of small biologically active peptides on cartridges and microelution 96-well plates from human urine. Drug Test Anal 8(9):940–949

    Article  CAS  PubMed  Google Scholar 

  69. Fleuchot B, Gitton C, Guillot A, Vidic J, Nicolas P, Besset C, Fontaine L, Hols P, Leblond-Bourget N, Monnet V, Gardan R (2011) Rgg proteins associated with internalized small hydrophobic peptides: a new quorum-sensing mechanism in streptococci. Mol Microbiol 80(4):1102–1119

    Article  CAS  PubMed  Google Scholar 

  70. Gardan R, Besset C, Gitton C, Guillot A, Fontaine L, Hols P, Monnet V (2013) Extracellular life cycle of ComS, the competence-stimulating peptide of Streptococcus thermophilus. J Bacteriol 195(8):1845–1855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wenderska IB, Lukenda N, Cordova M, Magarvey N, Cvitkovitch DG, Senadheera DB (2012) A novel function for the competence inducing peptide, XIP, as a cell death effector of Streptococcus mutans. FEMS Microbiol Lett 336(2):104–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gowda GA, Djukovic D (2014) Overview of mass spectrometry-based metabolomics: opportunities and challenges. Methods Mol Biol 1198:3–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Roux A, Todd DA, Velazquez JV, Cech NB, Sonenshein AL (2014) CodY-mediated regulation of the Staphylococcus aureus Agr system integrates nutritional and population density signals. J Bacteriol 196(6):1184–1196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Di Palma S, Hennrich ML, Heck AJ, Mohammed S (2012) Recent advances in peptide separation by multidimensional liquid chromatography for proteome analysis. J. Proteomics 75(13):3791–3813

    Article  CAS  PubMed  Google Scholar 

  75. Xu J, Gao J, Yu C, He H, Yang Y, Figeys D, Zhou H (2016) Development of online pH gradient-eluted strong cation exchange nanoelectrospray-tandem mass spectrometry for proteomic analysis facilitating basic and histidine-containing peptides identification. Anal Chem 88(1):583–591

    Article  CAS  PubMed  Google Scholar 

  76. Abts A, Mavaro A, Stindt J, Bakkes PJ, Metzger S, Driessen AJ, Smits SH, Schmitt L (2011) Easy and rapid purification of highly active nisin. Int J Pept 2011:175145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Periat A, Fekete S, Cusumano A, Veuthey JL, Beck A, Lauber M, Guillarme D (2016) Potential of hydrophilic interaction chromatography for the analytical characterization of protein biopharmaceuticals. J Chromatogr A 1448:81–92

    Article  CAS  PubMed  Google Scholar 

  78. Badgett MJ, Boyes B, Orlando R (2017) The separation and quantitation of peptides with and without oxidation of methionine and deamidation of asparagine using hydrophilic interaction liquid chromatography with mass spectrometry (HILIC–MS). J. Am. Soc, Mass Spectrom

    Google Scholar 

  79. Gilar M, Jaworski A (2011) Retention behavior of peptides in hydrophilic-interaction chromatography. J Chromatogr A 1218(49):8890–8896

    Article  CAS  PubMed  Google Scholar 

  80. Albuquerque P, Nicola AM, Nieves E, Paes HC, Williamson PR, Silva-Pereira I, Casadevall A (2013) Quorum sensing-mediated, cell density-dependent regulation of growth and virulence in Cryptococcus neoformans. MBio 5(1):e00986-00913

    Google Scholar 

  81. Buszewski B, Noga S (2012) Hydrophilic interaction liquid chromatography (HILIC)—a powerful separation technique. Anal Bioanal Chem 402(1):231–247

    Article  CAS  PubMed  Google Scholar 

  82. Van Dorpe S, Vergote V, Pezeshki A, Burvenich C, Peremans K, De Spiegeleer B (2010) Hydrophilic interaction LC of peptides: columns comparison and clustering. J Sep Sci 33(6–7):728–739

    Article  CAS  PubMed  Google Scholar 

  83. Abbood A, Smadja C, Taverna M, Herrenknecht C (2017) Hydrophilic interaction liquid chromatography for dalargin separation from its structural analogues and side products. J Chromatogr A 1498:155–162

    Article  CAS  PubMed  Google Scholar 

  84. Simon R, Enjalbert Q, Biarc J, Lemoine J, Salvador A (2012) Evaluation of hydrophilic interaction chromatography (HILIC) versus C18 reversed-phase chromatography for targeted quantification of peptides by mass spectrometry. J Chromatogr A 1264:31–39

    Article  CAS  PubMed  Google Scholar 

  85. Kabytaev K, Durairaj A, Shin D, Rohlfing CL, Connolly S, Little RR, Stoyanov AV (2016) Two-step ion-exchange chromatographic purification combined with reversed-phase chromatography to isolate C-peptide for mass spectrometric analysis. J Sep Sci 39(4):676–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Peng J, Elias JE, Thoreen CC, Licklider LJ, Gygi SP (2003) Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC–MS/MS) for large-scale protein analysis: the yeast proteome. J Proteome Res 2(1):43–50

    Article  CAS  PubMed  Google Scholar 

  87. Wynendaele E, Gevaert B, Stalmans S, Verbeke F, De Spiegeleer B (2015) Exploring the chemical space of quorum sensing peptides. Biopolymers 104(5):544–551

    Article  CAS  PubMed  Google Scholar 

  88. Nilsen T, Nes IF, Holo H (1998) An exported inducer peptide regulates bacteriocin production in Enterococcus faecium CTC492. J Bacteriol 180(7):1848–1854

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Mori M, Tanaka H, Sakagami Y, Isogai A, Fujino M, Kitada C, White BA, An FY, Clewell DB, Suzuki A (1986) Isolation and structure of the Streptococcus faecalis sex pheromone, cAM373. FEBS Lett 206(1):69–72

    Article  CAS  PubMed  Google Scholar 

  90. Nakayama J, Ruhfel RE, Dunny GM, Isogai A, Suzuki A (1994) The prgQ gene of the Enterococcus faecalis tetracycline resistance plasmid pCF10 encodes a peptide inhibitor, iCF10. J Bacteriol 176(23):7405–7408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mori M, Tanaka H, Sakagami Y, Isogai A, Fujino M, Kitada C, Clewell DB, Suzuki A (1987) Isolation and structure of the sex pheromone inhibitor, iPD1, excreted by Streptococcus faecalis donor strains harboring plasmid pPD1. J Bacteriol 169(4):1747–1749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Nakayama J, Tanaka E, Kariyama R, Nagata K, Nishiguchi K, Mitsuhata R, Uemura Y, Tanokura M, Kumon H, Sonomoto K (2007) Siamycin attenuates fsr quorum sensing mediated by a gelatinase biosynthesis-activating pheromone in Enterococcus faecalis. J Bacteriol 189(4):1358–1365

    Article  CAS  PubMed  Google Scholar 

  93. Nakayama J, Abe Y, Ono Y, Isogai A, Suzuki A (1995) Isolation and structure of the Enterococcus faecalis sex pheromone, cOB1, that induces conjugal transfer of the hemolysin/bacteriocin plasmids, pOB1 and pYI1. Biosci Biotechnol Biochem 59(4):703–705

    Article  CAS  PubMed  Google Scholar 

  94. Bouillaut L, Perchat S, Arold S, Zorrilla S, Slamti L, Henry C, Gohar M, Declerck N, Lereclus D (2008) Molecular basis for group-specific activation of the virulence regulator PlcR by PapR heptapeptides. Nucleic Acids Res 36(11):3791–3801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lanigan-Gerdes S, Dooley AN, Faull KF, Lazazzera BA (2007) Identification of subtilisin, Epr and Vpr as enzymes that produce CSF, an extracellular signalling peptide of Bacillus subtilis. Mol Microbiol 65(5):1321–1333

    Article  CAS  PubMed  Google Scholar 

  96. Ansaldi M, Marolt D, Stebe T, Mandic-Mulec I, Dubnau D (2002) Specific activation of the Bacillus quorum-sensing systems by isoprenylated pheromone variants. Mol Microbiol 44(6):1561–1573

    Article  CAS  PubMed  Google Scholar 

  97. Okada M, Yamaguchi H, Sato I, Tsuji F, Qi J, Dubnau D, Sakagami Y (2007) Acid labile ComX pheromone from Bacillus mojavensis RO-H-1. Biosci Biotechnol Biochem 71(7):1807–1810

    Article  CAS  PubMed  Google Scholar 

  98. Szekat C, Jack RW, Skutlarek D, Farber H, Bierbaum G (2003) Construction of an expression system for site-directed mutagenesis of the lantibiotic mersacidin. Appl Environ Microbiol 69(7):3777–3783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Heinzmann S, Entian KD, Stein T (2006) Engineering Bacillus subtilis ATCC 6633 for improved production of the lantibiotic subtilin. Appl Microbiol Biotechnol 69(5):532–536

    Article  CAS  PubMed  Google Scholar 

  100. Aceves-Diez AE, Robles-Burgueno R, de la Torre M (2007) SKPDT is a signaling peptide that stimulates sporulation and cry1Aa expression in Bacillus thuringiensis but not in Bacillus subtilis. Appl Microbiol Biotechnol 76(1):203–209

    Article  CAS  PubMed  Google Scholar 

  101. Okada M, Nakamura Y, Hayashi S, Ozaki K, Usami S (2015) Chemical structure and biological activity of a quorum sensing pheromone from Bacillus subtilis subsp. natto. Bioorg Med Chem Lett 25(19):4293–4296

    Article  CAS  PubMed  Google Scholar 

  102. Fuchs SW, Jaskolla TW, Bochmann S, Kotter P, Wichelhaus T, Karas M, Stein T, Entian KD (2011) Entianin, a novel subtilin-like lantibiotic from Bacillus subtilis subsp. spizizenii DSM 15029T with high antimicrobial activity. Appl Environ Microbiol 77(5):1698–1707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Spiess T, Korn SM, Kotter P, Entian KD (2015) Activation of histidine kinase SpaK is mediated by the N-terminal portion of subtilin-like lantibiotics and is independent of lipid II. Appl Environ Microbiol 81(16):5335–5343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Junio HA, Todd DA, Ettefagh KA, Ehrmann BM, Kavanaugh JS, Horswill AR, Cech NB (2013) Quantitative analysis of autoinducing peptide I (AIP-I) from Staphylococcus aureus cultures using ultrahigh performance liquid chromatography-high resolving power mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci 930:7–12

    Article  CAS  Google Scholar 

  105. Balaban N, Novick RP (1995) Autocrine regulation of toxin synthesis by Staphylococcus aureus. Proc Natl Acad Sci USA 92(5):1619–1623

    Article  CAS  PubMed  Google Scholar 

  106. Sahl HG, Grossgarten M, Widger WR, Cramer WA, Brandis H (1985) Structural similarities of the staphylococcin-like peptide Pep-5 to the peptide antibiotic nisin. Antimicrob Agents Chemother 27(5):836–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Bierbaum G, Reis M, Szekat C, Sahl HG (1994) Construction of an expression system for engineering of the lantibiotic Pep5. Appl Environ Microbiol 60(12):4332–4338

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Olson ME, Todd DA, Schaeffer CR, Paharik AE, Van Dyke MJ, Buttner H, Dunman PM, Rohde H, Cech NB, Fey PD, Horswill AR (2014) Staphylococcus epidermidis agr quorum-sensing system: signal identification, cross talk, and importance in colonization. J Bacteriol 196(19):3482–3493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Clewell DB, An FY, Mori M, Ike Y, Suzuki A (1987) Streptococcus faecalis sex pheromone (cAD1) response: evidence that the peptide inhibitor excreted by pAD1-containing cells may be plasmid determined. Plasmid 17(1):65–68

    Article  CAS  PubMed  Google Scholar 

  110. Petersen FC, Fimland G, Scheie AA (2006) Purification and functional studies of a potent modified quorum-sensing peptide and a two-peptide bacteriocin in Streptococcus mutans. Mol Microbiol 61(5):1322–1334

    Article  CAS  PubMed  Google Scholar 

  111. Khan R, Rukke HV, Ricomini Filho AP, Fimland G, Arntzen MO, Thiede B, Petersen FC (2012) Extracellular identification of a processed type II ComR/ComS pheromone of Streptococcus mutans. J Bacteriol 194(15):3781–3788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Aggarwal C, Jimenez JC, Nanavati D, Federle MJ (2014) Multiple length peptide-pheromone variants produced by Streptococcus pyogenes directly bind Rgg proteins to confer transcriptional regulation. J Biol Chem 289(32):22427–22436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Pinto D, Marzani B, Minervini F, Calasso M, Giuliani G, Gobbetti M, De Angelis M (2011) Plantaricin A synthesized by Lactobacillus plantarum induces in vitro proliferation and migration of human keratinocytes and increases the expression of TGF-beta1, FGF7, VEGF-A and IL-8 genes. Peptides 32(9):1815–1824

    Article  CAS  PubMed  Google Scholar 

  114. Kumar V, Syal P, Satyanarayana T (2013) Highly thermo–halo–alkali-stable β-1,4-endoxylanase from a novel polyextremophilic strain of Bacillus halodurans. Bioprocess Biosyst Eng 36(5):555–565

    Article  CAS  PubMed  Google Scholar 

  115. Kumar S, Kolodkin-Gal I, Vesper O, Alam N, Schueler-Furman O, Moll I, Engelberg-Kulka H (2016) Escherichia coli quorum-sensing EDF, a peptide generated by novel multiple distinct mechanisms and regulated by trans-translation. MBio 7(1):e02034-02015

    Article  CAS  Google Scholar 

  116. Martin-Visscher LA, van Belkum MJ, Garneau-Tsodikova S, Whittal RM, Zheng J, McMullen LM, Vederas JC (2008) Isolation and characterization of carnocyclin a, a novel circular bacteriocin produced by Carnobacterium maltaromaticum UAL307. Appl Environ Microbiol 74(15):4756–4763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kuipers OP, Rollema HS, Yap WM, Boot HJ, Siezen RJ, de Vos WM (1992) Engineering dehydrated amino acid residues in the antimicrobial peptide nisin. J Biol Chem 267(34):24340–24346

    CAS  PubMed  Google Scholar 

  118. Daniel-Ivad M, Hameed N, Tan S, Dhanjal R, Socko D, Pak P, Gverzdys T, Elliot MA, Nodwell JR (2017) An engineered allele of afsQ1 facilitates the discovery and investigation of cryptic natural products. ACS Chem, Biol

    Google Scholar 

  119. Zetzmann M, Sanchez-Kopper A, Waidmann MS, Blombach B, Riedel CU (2016) Identification of the agr peptide of Listeria monocytogenes. Front Microbiol 7:989

    Article  PubMed  PubMed Central  Google Scholar 

  120. Verbeke TJ, Giannone RJ, Klingeman DM, Engle NL, Rydzak T, Guss AM, Tschaplinski TJ, Brown SD, Hettich RL, Elkins JG (2017) Pentose sugars inhibit metabolism and increase expression of an AgrD-type cyclic pentapeptide in Clostridium thermocellum. Sci Rep 7:43355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Pang X, Liu C, Lyu P, Zhang S, Liu L, Lu J, Ma C, Lv J (2016) Identification of quorum sensing signal molecule of Lactobacillus delbrueckii subsp. bulgaricus. J Agric Food Chem 64(49):9421–9427

    Article  CAS  PubMed  Google Scholar 

  122. Verbeke F, Wynendaele E, Braet S, D’Hondt M, De Spiegeleer B (2015) Quality evaluation of synthetic quorum sensing peptides used in R&D. J Pharm Anal 5(3):169–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hernandez-Hernandez O, Quintanilla-Lopez JE, Lebron-Aguilar R, Sanz ML, Moreno FJ (2016) Characterization of post-translationally modified peptides by hydrophilic interaction and reverse phase liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry. J Chromatogr A 1428:202–211

    Article  CAS  PubMed  Google Scholar 

  124. Asberg D, Langborg Weinmann A, Leek T, Lewis RJ, Klarqvist M, Lesko M, Kaczmarski K, Samuelsson J, Fornstedt T (2017) The importance of ion-pairing in peptide purification by reversed-phase liquid chromatography. J Chromatogr A 1496:80–91

    Article  CAS  PubMed  Google Scholar 

  125. Rajput A, Gupta AK, Kumar M (2015) Prediction and analysis of quorum sensing peptides based on sequence features. PLoS One 10(3):e0120066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Henquet MG, Roelse M, de Vos RC, Schipper A, Polder G, de Ruijter NC, Hall RD, Jongsma MA (2016) Metabolomics meets functional assays: coupling LC–MS and microfluidic cell-based receptor-ligand analyses. Metabolomics 12:115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the ‘Research Foundation—Flanders (FWO)’ (Grant number 1S21017N to Nathan Debunne) and the ‘Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen)’ (Grant number 131356 to Frederick Verbeke).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bart De Spiegeleer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Published in the topical collection Peptide and Protein Analysis with Debby Mangelings and Gerhard K. E. Scriba as editors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Debunne, N., Verbeke, F., Janssens, Y. et al. Chromatography of Quorum Sensing Peptides: An Important Functional Class of the Bacterial Peptidome. Chromatographia 81, 25–40 (2018). https://doi.org/10.1007/s10337-017-3411-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-017-3411-2

Keywords

Navigation