Skip to main content

Overview of Mass Spectrometry-Based Metabolomics: Opportunities and Challenges

  • Protocol
  • First Online:
Mass Spectrometry in Metabolomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1198))

Abstract

The field of metabolomics has witnessed an exponential growth in the last decade driven by important applications spanning a wide range of areas in the basic and life sciences and beyond. Mass spectrometry in combination with chromatography and nuclear magnetic resonance are the two major analytical avenues for the analysis of metabolic species in complex biological mixtures. Owing to its inherent significantly higher sensitivity and fast data acquisition, MS plays an increasingly dominant role in the metabolomics field. Propelled by the need to develop simple methods to diagnose and manage the numerous and widespread human diseases, mass spectrometry has witnessed tremendous growth with advances in instrumentation, experimental methods, software, and databases. In response, the metabolomics field has moved far beyond qualitative methods and simple pattern recognition approaches to a range of global and targeted quantitative approaches that are now routinely used and provide reliable data, which instill greater confidence in the derived inferences. Powerful isotope labeling and tracing methods have become very popular. The newly emerging ambient ionization techniques such as desorption ionization and rapid evaporative ionization have allowed direct MS analysis in real time, as well as new MS imaging approaches. While the MS-based metabolomics has provided insights into metabolic pathways and fluxes, and metabolite biomarkers associated with numerous diseases, the increasing realization of the extremely high complexity of biological mixtures underscores numerous challenges including unknown metabolite identification, biomarker validation, and interlaboratory reproducibility that need to be dealt with for realization of the full potential of MS-based metabolomics. This chapter provides a glimpse at the current status of the mass spectrometry-based metabolomics field highlighting the opportunities and challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Van der Greef J, Smilde AK (2005) Symbiosis of chemometrics and metabolomics: past, present, and future. J Chemometr 19:376–386

    Article  Google Scholar 

  2. Nicholson JK, Lindon JC (2008) Systems biology: metabolomics. Nature 455:1054–1056

    Article  PubMed  CAS  Google Scholar 

  3. Gates SC, Sweeley CC (1978) Quantitative metabolic profiling based on gas chromatography. Clin Med 24:1663–1673

    CAS  Google Scholar 

  4. Horning EC, Horning MG (1971) Human metabolic profiles obtained by GC and GC/MS. J Chromatogr Sci 9:129–140

    Article  CAS  Google Scholar 

  5. Horning EC, Horning MG (1971) Metabolic profiles: gas-phase methods for analysis of metabolites. Clin Chem 17:802–809

    PubMed  CAS  Google Scholar 

  6. Griffiths WJ, Wang Y (2009) Mass spectrometry: from proteomics to metabolomics and lipidomics. Chem Soc Rev 38:1882–1896

    Article  PubMed  CAS  Google Scholar 

  7. Ramautar R, Somsen GW, de Jong GJ (2013) CE-MS for metabolomics: developments and applications in the period 2010-2012. Electrophoresis 34:86–98

    Article  PubMed  CAS  Google Scholar 

  8. Fiehn O, Kopka J, Dörmann P, Altmann T, Trethewey RN, Willmitzer L (2000) Metabolite profiling for plant functional genomics. Nat Biotechnol. 18:1157–61

    Google Scholar 

  9. Sparkman OD, Penton Z, Kitson FG (2011) Gas chromatography and mass spectrometry: a practical guide, 2nd edn. Academic, Burlington, MA

    Google Scholar 

  10. Dunn WB, Broadhurst D, Ellis DI, Brown M, Halsall A, O’Hagan S, Spasic I, Tseng A, Kell DB (2008).A GC-TOF-MS study of the stability of serum and urine metabolomes during the UK Biobank sample collection and preparation protocols. Int. J. Epidemiol. 37:23–30

    Google Scholar 

  11. Roberts LD, Souza AL, Gerszten RE, Clish CB (2012) Targeted metabolomics. Curr Protoc Mol Biol 30:1–24

    Google Scholar 

  12. Bajad SU, Lu W, Kimball EH, Yuan J, Peterson C, Rabinowitz JD (2006) Separation and quantitation of water soluble cellular metabolites by hydrophilic interaction chromatography-tandem mass spectrometry. J Chromatogr A 1125:76–88

    Article  PubMed  CAS  Google Scholar 

  13. Tian H, Bai J, An Z, Chen Y, Zhang R, He J, Bi X, Song Y, Abliz Z (2013) Plasma metabolome analysis by integrated ionization rapid-resolution liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 27:2071–2080

    Article  PubMed  CAS  Google Scholar 

  14. O’Connell TM (2012) Recent advances in metabolomics in oncology. Bioanalysis 4: 431–451

    Article  PubMed  Google Scholar 

  15. Williams MD, Reeves R, Resar LS, Hill HH Jr (2013) Metabolomics of colorectal cancer: past and current analytical platforms. Anal Bioanal Chem 405:5013–5030

    Article  PubMed  CAS  Google Scholar 

  16. Trock BJ (2011) Application of metabolomics to prostate cancer. Urol Oncol 29: 572–581

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Abbassi-Ghadi N, Kumar S, Huang J, Goldin R, Takats Z, Hanna GB (2013) Metabolomic profiling of esophago-gastric cancer: a systematic review. Eur J Cancer 49:3625–3637

    Article  PubMed  CAS  Google Scholar 

  18. Shah SH, Kraus WE, Newgard CB (2012) Metabolomic profiling for the identification of novel biomarkers and mechanisms related to common cardiovascular diseases: form and function. Circulation 126:1110–1120

    Article  PubMed  Google Scholar 

  19. Rhee EP, Gerszten RE (2012) Metabolomics and cardiovascular biomarker discovery. Clin Chem 58:139–147

    Article  PubMed  CAS  Google Scholar 

  20. Weiss RH, Kim K (2011) Metabolomics in the study of kidney diseases. Nat Rev Nephrol 8:22–33

    Article  PubMed  Google Scholar 

  21. Mamas M, Dunn WB, Neyses L, Goodacre R (2011) The role of metabolites and metabolomics in clinically applicable biomarkers of disease. Arch Toxico 85:5–17

    Article  CAS  Google Scholar 

  22. Robertson DG, Watkins PB, Reily MD (2011) Metabolomics in toxicology: preclinical and clinical applications. Toxicol Sci Suppl 1:S146–S170

    Article  Google Scholar 

  23. Scalbert A, Brennan L, Fiehn O, Hankemeier T, Kristal BS, van Ommen B, Pujos-Guillot E, Verheij E, Wishart D, Wopereis S (2009) Mass-spectrometry-based metabolomics: limitations and recommendations for future progress with particular focus on nutrition research. Metabolomics 5:435–458

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Reaves ML, Rabinowitz JD (2011) Metabolomics in systems microbiology. Curr Opin Biotechnol 22:17–25

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Zamboni N, Fendt SM, Rühl M, Sauer U (2009) (13)C-based metabolic flux analysis. Nat Protoc 4:878–892

    Article  PubMed  CAS  Google Scholar 

  26. Birkemeyer C, Luedemann A, Wagner C, Erban A, Kopka J (2005) Metabolome analysis: the potential of in vivo labeling with stable isotopes for metabolite profiling. Trends Biotechnol 23:28–33

    Article  PubMed  CAS  Google Scholar 

  27. Mashego MR, Wu L, van Dam JC, Ras C, Vinke JL, Van Winden WA, Van Gulik WM, Heijnen JJ (2004) MIRACLE: mass isotopomer ratio analysis of U-13C-labeled extracts. A new method for accurate quantification of changes in concentrations of intracellular metabolites. Biotechnol Bioeng 85:620–628

    Article  PubMed  CAS  Google Scholar 

  28. Takats Z, Wiseman JM, Gologan B, Cooks RG (2004) Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306:471–473

    Article  PubMed  CAS  Google Scholar 

  29. Cody RB, Laramee JA, Durst HD (2005) Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal Chem 77:2297–2302

    Article  PubMed  CAS  Google Scholar 

  30. Chen H, Venter A, Cooks RG (2006) Extractive electrospray ionization for direct analysis of undiluted urine, milk and other complex mixtures without sample preparation. Chem Commun 19:2042–2044

    Article  Google Scholar 

  31. Wu C, Dill AL, Eberlin LS, Cooks RG (2013) Mass spectrometry imaging under ambient conditions. Mass Spectrom Rev 32:218–243

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Huang MZ, Cheng SC, Cho YT, Shiea J (2011) Ambient ionization mass spectrometry: a tutorial. Anal Chim Acta 702:1–15

    Article  PubMed  CAS  Google Scholar 

  33. Balog J, Sasi-Szabó L, Kinross J, Lewis MR, Muirhead LJ, Veselkov K, Mirnezami R, Dezső B, Damjanovich L, Darzi A, Nicholson JK, Takáts Z (2013) Intraoperative tissue identification using rapid evaporative ionization mass spectrometry. Sci Transl Med 5:194ra93

    Article  PubMed  CAS  Google Scholar 

  34. Nemes P, Vertes A (2012) Ambient mass spectrometry for in vivo local analysis and in situ molecular tissue imaging. TrAC Trends Anal Chem 34:22–34

    Article  CAS  Google Scholar 

  35. Dill AL, Eberlin LS, Zheng C, Costa AB, Ifa DR, Cheng L, Masterson TA, Koch MO, Vitek O, Cooks RG (2010) Multivariate statistical differentiation of renal cell carcinomas based on lipidomic analysis by ambient ionization imaging mass spectrometry. Anal Bioanal Chem 398:2969–2978

    Article  PubMed  CAS  Google Scholar 

  36. Dill AL, Eberlin LS, Costa AB, Zheng C, Ifa DR, Cheng L, Masterson TA, Koch MO, Vitek O, Cooks RG (2011) Multivariate statistical identification of human bladder carcinomas using ambient ionization imaging mass spectrometry. Chem A Eur J 17:2897–2902

    Article  CAS  Google Scholar 

  37. Eberlin LS, Dill AL, Costa AB, Ifa DR, Cheng L, Masterson T, Koch M, Ratliff TL, Cooks RG (2010) Cholesterol sulfate imaging in human prostate cancer tissue by desorption electrospray ionization mass spectrometry. Anal Chem 82:3430–3434

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Eberlin LS, Norton I, Dill AL, Golby AJ, Ligon KL, Santagata S, Cooks RG, Agar NY (2012) Classifying human brain tumors by lipid imaging with mass spectrometry. Cancer Res 72:645–654

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Eberlin LS, Norton I, Orringer D, Dunn IF, Liu X, Ide JL, Jarmusch AK, Ligon KL, Jolesz FA, Golby AJ, Santagata S, Agar NY, Cooks RG (2013) Ambient mass spectrometry for the intraoperative molecular diagnosis of human brain tumors. Proc Natl Acad Sci U S A 110:1611–1616

    Article  PubMed  PubMed Central  Google Scholar 

  40. Holmes E, Antti H (2002) Chemometric contributions to the evolution of metabonomics: mathematical solutions to characterising and interpreting complex biological NMR spectra. Analyst 127:1549–1557

    Article  PubMed  CAS  Google Scholar 

  41. Griffin JL (2004) Metabolic profiles to define the genome: can we hear the phenotypes? Philos Trans Royal Soc Lond B Biol Sci 359:857–871

    Article  CAS  Google Scholar 

  42. Barker M, Rayens W (2003) Partial least squares for discrimination. J Chemometr 17:166–173

    Article  CAS  Google Scholar 

  43. Heather LC, Wang X, West JA, Griffin JL (2013) A practical guide to metabolomic profiling as a discovery tool for human heart disease. J Mol Cell Cardiol 55:2–11

    Article  PubMed  CAS  Google Scholar 

  44. Girard DA (1989) A fast “Monte-Carlo cross validation” procedure for large least squares problems with noisy data. Num Math 56:1–23

    Article  Google Scholar 

  45. Nagana Gowda GA, Raftery D (2013) Biomarker discovery and translation in metabolomics. Curr Metabolom 1:227–240

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from NIH (National Institute of General Medical Sciences NIH 2R01GM085291).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Nagana Gowda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Gowda, G.A.N., Djukovic, D. (2014). Overview of Mass Spectrometry-Based Metabolomics: Opportunities and Challenges. In: Raftery, D. (eds) Mass Spectrometry in Metabolomics. Methods in Molecular Biology, vol 1198. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1258-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1258-2_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1257-5

  • Online ISBN: 978-1-4939-1258-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics