Skip to main content
Log in

SDS-PAGE as a Tool for Hydrodynamic Diameter-Dependent Separation of Quantum Dots

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

The purpose of this study was to test quantum dots (QDs) separation by native and Tris–Glycine SDS-PAGE according to the protocols commonly used for protein analyses. To study the electrophoretic behaviour of quantum dots, ten samples of previously synthesized CdTe QDs stabilized with mercaptosuccinic acid (MSA) were used. Prior to electrophoresis the hydrodynamic diameters of QDs and zeta potentials were determined, as well as the fluorescence properties and stability of QDs in the running buffers. After verification of QDs stability and separation in native polyacrylamide gel, SDS-PAGE in gradient 4–20 % polyacrylamide gel was performed. Under UV irradiation a colour-dependent separation of QDs was observed, which was consistent with their hydrodynamic diameter distribution. The electrophoretic conditions were further optimized with respect to achieving the optimal colour separation, fluorescence stability and to minimize the time of analysis. Based on the results obtained, for further work 15 % polyacrylamide gels with SDS were used and the times (30–60 min) and voltage (100–150 V) used for separation were optimized. Under the optimal separation conditions (30 min, 100 V) the addition of MSA in the concentration range 0–4 mM was used to improve visualization of QDs with diameters in the range from 7 ± 2 to 4 ± 2 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

QDs:

Quantum dots

DLS:

Dynamic light scattering

AGE:

Agarose gel electrophoresis

TAE:

Tris-acetate-EDTA

TBE:

Tris-borate-EDTA

PAGE:

Polyacrylamide gel electrophoresis

DNA:

Deoxyribonucleic acid

SDS:

Sodium-dodecyl sulphate

SDS-PAGE:

Polyacrylamide gel electrophoresis in presence of sodium-dodecyl sulphate

MPA:

Mercaptopropionic acid

MSA:

Mercaptosuccinic acid

T-G:

Tris-glycine

EDTA:

Ethylenediaminetetraacetic acid

References

  1. Drbohlavova J, Adam V, Kizek R, Hubalek J (2009) Int J Mol Sci 10:656–673. doi:10.3390/ijms10020656

    Article  CAS  Google Scholar 

  2. Ryvolova M, Chomoucka J, Janu L, Drbohlavova J, Adam V, Hubalek J, Kizek R (2011) Electrophoresis 32:1619–1622. doi:10.1002/elps.201000634

    CAS  Google Scholar 

  3. Kerman K, Endo T, Tsukamoto M, Chikae M, Takamura Y, Tamiya E (2007) Talanta 71:1494–1499. doi:10.1016/j.talanta.2006.07.027

    Article  CAS  Google Scholar 

  4. Grabolle M, Ziegler J, Merkulov A, Nann T, Resch-Genger U (2008) Stability and fluorescence quantum yield of CdSe-ZnS quantum dots—influence of the thickness of the ZnS shell. In: Wolfbeis OS (ed) Fluorescence methods and applications: spectroscopy, imaging, and probes. Blackwell Publishing, Oxford, pp 235–241

    Google Scholar 

  5. Algar WR, Tavares AJ, Krull UJ (2010) Anal Chim Acta 673:1–25. doi:10.1016/j.aca.2010.05.026

    Article  CAS  Google Scholar 

  6. Bailey RE, Smith AM, Nie SM (2004) Physica E 25:1–12. doi:10.1016/j.physe.2004.07.013

    Article  CAS  Google Scholar 

  7. Jamieson T, Bakhshi R, Petrova D, Pocock R, Imani M, Seifalian AM (2007) Biomaterials 28:4717–4732. doi:10.1016/j.biomaterials.2007.07.014

    Article  CAS  Google Scholar 

  8. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Nat Mater 4:435–446. doi:10.1038/nmat1390

    Article  CAS  Google Scholar 

  9. Somers R, Bawendi M, Nocera D (2007) Green Chem 9:T37–T37

    Google Scholar 

  10. Gerion D, Parak WJ, Williams SC, Zanchet D, Micheel CM, Alivisatos AP (2002) J Am Chem Soc 124:7070–7074. doi:10.1021/ja017822w

    Article  CAS  Google Scholar 

  11. Ying MS, Feng Y, Duan RY, Li YJ, Yu NK (2012) Chin Sci Bull 57:1903–1909. doi:10.1007/s11434-012-5147-6

    Article  Google Scholar 

  12. Prabhakaran P, Kim WJ, Lee KS, Prasad PN (2012) Opt Mater Expr 2:578–593

    Article  CAS  Google Scholar 

  13. Autenrieth T, Wagner J, Hempelmann R, Hartl W, Robert A, Grubel G (2004) Appl Organomet Chem 18:520–522. doi:10.1002/aoc.754

    Article  CAS  Google Scholar 

  14. Bucking W, Massadeh S, Merkulov A, Xu S, Nann T (2010) Anal Bioanal Chem 396:1087–1094. doi:10.1007/s00216-009-3107-z

    Article  Google Scholar 

  15. Ehlert O, Bucking W, Riegler J, Merkulov A, Nann T (2008) Microchim Acta 160:351–356. doi:10.1007/s00604-007-0798-8

    Article  CAS  Google Scholar 

  16. Liu FK, Hsu YT, Wu CH (2005) J Chromatogr A 1083:205–214. doi:10.1016/j.chroma.2005.06.035

    Article  CAS  Google Scholar 

  17. Radko SP, Chrambach A (2002) Electrophoresis 23:1957–1972. doi:10.1002/1522-2683(200207)23:13<1957:aid-elps1957>3.0.co;2-i

    Article  CAS  Google Scholar 

  18. Xu SH, Liu PP, Lu X, Zhang J, Huang LY, Hua WH, He DC, Ouyang J (2014) Electrophoresis 35:546–553. doi:10.1002/elps.201300308

    Article  CAS  Google Scholar 

  19. Kim JY, Kim HB, Jang DJ (2013) Electrophoresis 34:911–916. doi:10.1002/elps.201200492

    Article  CAS  Google Scholar 

  20. Sweeney SF, Woehrle GH, Hutchison JE (2006) J Am Chem Soc 128:3190–3197. doi:10.1021/ja0558241

    Article  CAS  Google Scholar 

  21. Fu AH, Micheel CM, Cha J, Chang H, Yang H, Alivisatos AP (2004) J Am Chem Soc 126:10832–10833. doi:10.1021/ja04647x

    Article  CAS  Google Scholar 

  22. Zeng QH, Zhang YL, Song K, Kong XG, Aalders MCG, Zhang H (2009) Talanta 80:307–312. doi:10.1016/j.talanta.2009.06.061

    Article  CAS  Google Scholar 

  23. Pinaud F, King D, Moore HP, Weiss S (2004) J Am Chem Soc 126:6115–6123. doi:10.1021/ja031691c

    Article  CAS  Google Scholar 

  24. Pons T, Uyeda HT, Medintz IL, Mattoussi H (2006) J Phys Chem B 110:20308–20316. doi:10.1021/jp065041h

    Article  CAS  Google Scholar 

  25. Gerion D, Pinaud F, Williams SC, Parak WJ, Zanchet D, Weiss S, Alivisatos AP (2001) J Phys Chem B 105:8861–8871. doi:10.1021/jp0105488

    Article  CAS  Google Scholar 

  26. Park S, Sinha N, Hamad-Schifferli K (2010) Langmuir 26:13071–13075. doi:10.1021/la1024108

    Article  CAS  Google Scholar 

  27. Blackshear PJ (1984) Methods Enzymol 104:237–255

    CAS  Google Scholar 

  28. Merian J, Gravier J, Navarro F, Texier I (2012) Molecules 17:5564–5591. doi:10.3390/molecules17055564

    Article  CAS  Google Scholar 

  29. Santra S, Malhotra A (2011) Wiley Interdiscip Rev Nanomed Nanobiotechnol 3:501–510. doi:10.1002/wnan.134

    CAS  Google Scholar 

  30. Shi XY, Ganser TR, Sun K, Balogh LP, Baker JR (2006) Nanotechnology 17:1072–1078. doi:10.1088/0957-4484/17/4/038

    Article  CAS  Google Scholar 

  31. Laemmli UK (1970) Nature 227:680–685

    Article  CAS  Google Scholar 

  32. Clarke S, Pinaud F, Beutel O, You CJ, Piehler J, Dahan M (2010) Nano Lett 10:2147–2154. doi:10.1021/nl100825n

    Article  CAS  Google Scholar 

  33. Lo RC, Ugaz VM (2006) Electrophoresis 27:373–386. doi:10.1002/elps.200500571

    Article  CAS  Google Scholar 

  34. Sarbolouki MN, Mahnam K, Rafiee-Pour HA (2004) Electrophoresis 25:2907–2911. doi:10.1002/elps.2000305973

    Article  CAS  Google Scholar 

  35. Wang TT, Jiang X (2013) Acs Appl Mater Interfaces 5:1190–1196. doi:10.1021/am302234z

    Article  CAS  Google Scholar 

  36. Heafey E, Laferriere M, Scaiano JC (2007) Photochem Photobiol Sci 6:580–584. doi:10.1039/b616616d

    Article  CAS  Google Scholar 

  37. Galian RE, Scaiano JC (2009) Photochem Photobiol Sci 8:70–74. doi:10.1039/b807580h

    Article  CAS  Google Scholar 

  38. Chen QD, Zhao WF, Fung YS (2011) Electrophoresis 32:1252–1257. doi:10.1002/elps.201000683

    Article  CAS  Google Scholar 

  39. Aoki YB, Suzuki KT (1991) Methods Enzymol 205:108–114. doi:10.1016/0076-6879(91)05092-a

    CAS  Google Scholar 

  40. Neeleshwar S, Chen CL, Tsai CB, Chen YY, Chen CC, Shyu SG, Seehra MS (2005) Phys Rev B 71:1–4. doi:10.1103/PhysRevB.71.201307

    Article  Google Scholar 

  41. Biju V, Itoh T, Anas A, Sujith A, Ishikawa M (2008) Anal Bioanal Chem 391:2469–2495. doi:10.1007/s00216-008-2185-7

    Article  CAS  Google Scholar 

  42. Mutavdzic D, Xu JM, Thakur G, Triulzi R, Kasas S, Jeremic M, Leblanc R, Radotic K (2011) Analyst 136:2391–2396. doi:10.1039/c0an00802h

    Article  CAS  Google Scholar 

  43. Sharma PK, Dutta RK, Liu CH, Pandey R, Pandey AC (2010) Mater Lett 64:1183–1186. doi:10.1016/j.matlet.2010.02.045

    Article  CAS  Google Scholar 

  44. Hlavacek A, Skladal P (2012) Electrophoresis 33:1427–1430. doi:10.1002/elps.201100696

    Article  CAS  Google Scholar 

  45. Singh J, Verma NK (2012) J Supercond Nov Magn 25:2425–2430. doi:10.1007/s10948-012-1631-0

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from NanoBioTECell GA CR P102/11/1068 is greatly acknowledged. Authors would like to thank to Ms. Dagmar Uhlirova for technical assistance.

Conflict of interest

The authors have declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rene Kizek.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5703 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krizkova, S., Dostalova, S., Michalek, P. et al. SDS-PAGE as a Tool for Hydrodynamic Diameter-Dependent Separation of Quantum Dots. Chromatographia 78, 785–793 (2015). https://doi.org/10.1007/s10337-015-2893-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-015-2893-z

Keywords

Navigation