Skip to main content

Advertisement

Log in

Population genetic structure of the Atlantic Forest endemic Conopophaga lineata (Passeriformes: Conopophagidae) reveals a contact zone in the Atlantic Forest

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

The Rufous Gnateater, Conopophaga lineata, is a small insectivorous understory bird which is endemic to and widely distributed in the tropical and subtropical Atlantic forest of South America. Its distribution makes it ideally suited for testing two major hypotheses for the origin of biodiversity, namely, the riverine barrier and the forest refuge hypotheses. In this study, we sequenced mitochondrial (control region) and nuclear markers (intron 5 of the β-fibrinogen gene) for individuals distributed in the southern Atlantic forest and obtained a strong genetic structure with one clear discontinuity in northern Brazilian state of São Paulo. We consistently detected signals of demographic expansion for both markers, with estimates indicating that expansion started in the Late Pleistocene (250,000 years ago), suggesting that the forest refuge hypothesis potentially explains Rufous Gnateater’s diversification. We also found evidence of gene flow between populations from each side of this discontinuity, with a possible secondary contact zone occurring in the states of Minas Gerais, São Paulo, and Rio de Janeiro.

Zusammenfassung

Die populationsgenetische Struktur des in der Mata Atlântica endemischen Rotkehl-Mückenfressers ( Conopophaga lineata , Passeriformes: conopophagidae) lässt eine Kontaktzone in der Mata Atlântica erkennen

Der Rotkehl-Mückenfresser, Conopophaga lineata, ist ein kleiner insektivorer Vogel, der im Unterholz der tropischen und subtropischen Mata Atlântica in Südamerika endemisch und weit verbreitet ist. Die Verbreitung des Rotkehl-Mückenfressers macht ihn besonders dafür geeignet, zwei Haupthypothesen zum Ursprung von Biodiversität zu testen, die „Flüsse als Barrieren“-Hypothese (“riverine barrier hypothesis”) und die „Wälder als Rückzugsgebiete“-Hypothese (“forest refuges hypothesis”). Wir haben mitochondriale Marker (Kontrollregion) und Zellkernmarker (Intron 5 von β-Fibrinogen) für in der südlichen Mata Atlântica verbreitete Individuen sequenziert und eine ausgeprägte genetische Struktur mit einer klaren Diskontinuität im Norden des Bundesstaates São Paulo gefunden. Für beide Marker haben wir durchweg Signale demographischer Ausbreitung entdeckt, die schätzungsweise im späten Pleistozän (vor 250000 Jahren) begann, was darauf hindeutet, dass die „Wälder als Rückzugsgebiete“-Hypothese einen möglichen Einflussfaktor bei der Diversifikation des Rotkehl-Mückenfressers darstellt. Wir haben auch Hinweise auf Genfluss zwischen Populationen auf beiden Seiten der Diskontinuität gefunden, mit einer möglichen sekundären Kontaktzone in den Bundesstaaten Minas Gerais, São Paulo und Rio de Janeiro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amaro RC, Carnaval AC, Yonenaga-Yassuda Y, Trefaut MR (2012) Demographic processes in the montane Atlantic rainforest: molecular and cytogenetic evidence from the endemic frog Proceratophrys boiei. Mol Phylogenet Evol 63:880–888

    Article  Google Scholar 

  • Axelsson E, Smith NGC, Sundstrom H, Berlin S, Ellegren H (2004) Male-biased mutation rate and divergence in autosomal, Z-linked and W-linked introns of chicken and turkey. Mol Biol Evol 21:1538–1547

    Article  CAS  PubMed  Google Scholar 

  • Bandelt HJ, Forster P, Rohl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    Article  CAS  PubMed  Google Scholar 

  • Batalha-Filho H, Cabanne GS, Miyaki CY (2012) Phylogeography of an Atlantic Forest passerine reveals demographic stability through the last glacial maximum. Mol Phylogenet Evol 65:892–902

    Article  PubMed  Google Scholar 

  • Behling H (2002) South and southeast Brazilian grasslands during late quaternary times: a synthesis. Palaeogeogr Paleoclimatol Palaeoecol 177:19–27

    Article  Google Scholar 

  • Behling H, Pillar VDP (2007) Late quaternary vegetation, biodiversity and fire dynamics on the southern Brazilian highland and their implication for conservation and management of modern Araucaria forest and grassland ecosystems. Phil Trans R Soc B 362:243–251

    Article  Google Scholar 

  • Brown KS (2005) Geological, evolutionary, and ecological bases of the diversification of neotropical butterflies: implications for conservation. In: Berminhgam E, Dick CW, Moritz C (eds) Tropical Rainforest: past present and future. University of Chicago Press, Chicago, pp 166–200

    Google Scholar 

  • Brown KS, Ab’Saber AN (1979) Ice-age forest refuges and evolution in Neotropics: correlation of paleoclimatological, geomorphological and pedological data with biological endemism. Paleoclimas 5:1–30

    Google Scholar 

  • Bruford MW, Hanotte O, Brookfield JFY, Burke T (1992) Single-locus and multilocus DNA fingerprinting. In: Hoelzel AR (ed) Molecular genetic analysis of populations—a practical approach. IRL Press, New York, pp 287–336

    Google Scholar 

  • Cabanne GS, Santos FR, Miyaki CY (2007) Phylogeography of Xiphorhynchus fuscus (Passeriformes, Dendrocolaptidae): vicariance and recent demographic expansion in southern Atlantic Forest. Biol J Linn Soc 91:73–84

    Article  Google Scholar 

  • Cabanne GS, d’Horta FM, Sari EH, Santos FR, Miyaki CY (2008) Nuclear and mitochondrial phylogeography of the Atlantic Forest endemic Xiphorhynchus fuscus (Aves: dendrocolaptidae): biogeography and systematics implications. Mol Phylogenet Evol 49:760–773

    Article  CAS  PubMed  Google Scholar 

  • Cabanne GS, D´Horta FM, Meyer D, Silva JMC, Myiaki CY (2011) Evolution of dendrocolaptes platyrostris (Aves:Furnariidae) between the south American open vegetation corridor and the Atlantic Forest. Biol J Linn Soc 103:801–820

  • Cabanne GS, Sari HER, Meyer D, Santos FR, Miyaki CY (2012) Matrilineal evidence for demographic expansion, low diversity and lack of phylogeographic structure in the Atlantic forest endemic Grenish Schiffornis Schiffornis virescens (Aves: tityridae). J Ornithol 154:371–384

    Article  Google Scholar 

  • Carnaval AC, Moritz C (2008) Historical climate modeling predicts patterns of current biodiversity in the Brazilian Atlantic Forest. J Biogeogr 35:1187–1201

    Article  Google Scholar 

  • Carnaval AC, Hickerson MJ, Haddad CFB, Rodrigues MT, Moritz C (2009) Stability predicts genetic diversity in the Brazilian Atlantic forest hotspot. Science 323:785–789

    Article  CAS  PubMed  Google Scholar 

  • Corander J, Tang J (2007) Bayesian analysis of population structure based on linked molecular information. Math Biosci 205:19–31

    Article  PubMed  Google Scholar 

  • Costa LP, Leite YLR, da Fonseca GAB, da Fonseca MT (2000) Biogeography of south American forest mammals: endemism and diversity in the Atlantic forest. Biotropica 32:872–881

    Article  Google Scholar 

  • Costa LP (2003) The historical bridge between the Amazon and the Atlantic Forest of Brazil: a study of molecular phylogeography with small mammals. J Biogeogr 30:71–86

    Article  Google Scholar 

  • d’Horta F, Cabanne GS, Meyer D, Miyaki CY (2011) The genetic effects of late quaternary climatic changes over a tropical latitudinal gradient: diversification of an Atlantic Forest passerine. Mol Ecol 20:1932–1935

    Article  Google Scholar 

  • Dantas GPM, Santos FR, Marini MÂ (2007) Genetic variability of Conopophaga lineata (Conopophagidae) in Atlantic Forest fragments. Braz J Biol 67:631–637

    Article  Google Scholar 

  • Dantas GPM, Santos FR, Marini MÂ (2009) Efeitos de fragmentação na razão sexual de Conopophaga lineata em fragmentos de Mata Atlântica no Estado de Minas Gerais. Iheringia Série Zool 99:115–119

    Article  Google Scholar 

  • Drummond AJ, Rambaut A (2007) BEAST: bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Excoffier L, Lischer HLE (2010) Arlequim ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Res 10:564–567

    Article  Google Scholar 

  • Fitzpatrick SW, Brasileiro CA, Haddad CF, Zamudio KR (2009) Geographical variation in genetic structure of an Atlantic coastal forest frog reveals regional differences in habitat stability. Mol Ecol 18:2877–2896

    Article  CAS  PubMed  Google Scholar 

  • Fu Y-X, Li WH (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geise L, Smith MF, Patton JL (2001) Diversification in the genus Akodon (Rodentia: sigmodontinae) in southeastern South America: mitochondrial DNA sequence analysis. J Mamm 82:92–101

    Article  Google Scholar 

  • Grazziotin FG, Monzel M, Echeverrigarauy S, Bonato SL (2006) Phylogeography of the Bothrops jararaca complex (Serpentes: viperidae): past fragmentation and island colonization in the Brazilian Atlantic Forest. Mol Ecol 15:3969–3982

    Article  CAS  PubMed  Google Scholar 

  • Gusmão Câmara I (2003) Brief history of conservation in the Atlantic forest. In: Galindo-Leal C, Gusmão Câmara I(eds). The state of the hotspots: The Atlantic Forest. Island Press, Washington DC, pp 31–42

  • Haffer J (1969) Speciation in Amazonian forest birds. Science 165:131–137

    Article  CAS  PubMed  Google Scholar 

  • Haffer J, Prance GT (2001) Climatic forcing of evolution in Amazonia during the Cenozoic: on the refuge theory of biotic differentiation. Amazoniana 16:579–605

    Google Scholar 

  • Hall TA (2001) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    Google Scholar 

  • Heled J, Drummond AD (2008) Bayesian inference of population size history from multiple loci. BMC Evol Biol 8:289

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hey J, Nielsen R (2004) Multilocus methods for estimating population sizes, migration rates and divergence time, with applications to the divergence of Drosophila pseudoobscura and D. persimilis. Genetics 167:747–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacerda DR, Marini MÂ, Santos FR (2007) Mitochondrial DNA corroborates the species distinctiveness of the Planalto (Thamnophilus pelzelni Hellmayr, 1924), the Sooretama (T. ambiguus Swainson, 1825) Slaty-antshrikes (Passeriformes: thamnophilidae). Braz J Biol 67:873–882

    Article  CAS  PubMed  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v. 5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Maldonado-Coelho M (2012) Climatic oscillations shape the phylogeographical structure of Atlantic forest fire-eye antbirds (Aves: thamnophilidae). Biol J Linn Soc 105:900–924

    Article  Google Scholar 

  • Marini MÂ, Hackett SJ (2002) A multifaceted approach to the characterization of an intergeneric hybrid manakin (Pipridae) from Brazil. Auk 119:1114–1120

    Article  Google Scholar 

  • Martins FM (2009) The Brazilian Atlantic Forest historical biogeography and the Carnaval-Moritz model of Pleistocene refugia: what do the phylogeographical studies tell us? Biol J Linn Soc 104:499–509

    Article  Google Scholar 

  • Miranda JM, Bernardi IP, Passos FC (2006) A new species of Eptesicus (Mammalia: chiroptera) from Atlantic Forest Brazil. Zootaxa 1383:57–68

    Article  Google Scholar 

  • Moritz C (2002) Strategies to protect biological diversity and the evolutionary process that sustain it. Syst Biol 51:238–254

    Article  PubMed  Google Scholar 

  • Mustrangi MA, Patton JL (1997) Phylogeography and systematics of the slender mouse opossum Marmosops (Marsupialia: didelphidae). Univ Calif Publ Zool 130:1–86

    Google Scholar 

  • Nielsen R, Wakeley J (2001) Distinguishing migration from isolation: a Markov chain Monte Carlo approach. Genetics 158:885–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavan AC, Martins FM, Santos FR, Ditchfield A, Redondo RAF (2011) Patterns of diversification in two species of short-tailed bats (Carollia Gray, 1838): the effects of historical fragmentation of Brazilian rainforests. Biol J Linn Soc 102:527–539

    Article  Google Scholar 

  • Pellegrino KCM, Rodrigues MI, Waite AN, Morando M, Yassuda YY, Sites JW (2005) Phylogeography and species limits in the Gymnodactylus darwinii complex (Gekkonidae, Squamata): genetic structure coincides with river systems in the Brazilian Atlantic Forest. Biol J Linn Soc 85:13–26

    Article  Google Scholar 

  • Pessoa RO (2007) Sistemática e Biogeografia Histórica da Família Conopophagidae (Aves: Passeriformes): Especiação nas Florestas da América do Sul. PhD thesis. Instituto de Biociências da Universidade de São Paulo, São Paulo

  • Petri S, Fulfaro VJ (1983) Geologia do Brasil—Fanerozoico. Editora da Universidade de São Paulo, São Paulo

    Google Scholar 

  • Polzin T, Daneschmand SV (2003) On Steiner trees and minimum spanning trees in hypergraphs. Oper Res Lett 31:12–20

    Article  Google Scholar 

  • Posada D, Cradall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  • Ramos-Onsins SE, Rozas J (2002) Statistical properties of new neutrality tests against population growth. Mol Biol Evol 19:2092–2100

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM (2009) The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153

    Article  Google Scholar 

  • Riccomini C, Peloggia AUG, Salón JCL, Kohner MW, Figueira RM (1989) Neotectonic activity in the Serra do Mar rift system (southeastern Brazil). J South Am Earth Sci 2:191–197

    Article  Google Scholar 

  • Salisbury CL, Seddon N, Cooney CR, Tobias JÁ (2012) The latitudinal grandient in dispersal constraints: ecological specialization drivers diversification in tropical birds. Ecol Lett 15:847–855

    Article  PubMed  Google Scholar 

  • Sick H (1997) Ornitologia Brasileira. Nova Fronteira, Rio de Janeiro 912p

    Google Scholar 

  • Sigrislt T (2005) Aves do Brasil: uma visão artística. Editora Avis Brasilis, São Paulo

    Google Scholar 

  • Silva JMC, Straube FC (1996) Systematics and biogeography of scaled woodcreepers (Aves: dendrocolpatidae). Stud Neotrop Fauna Environ 31:3–10

    Article  Google Scholar 

  • Silva JMC, De Sousa MC, Castelleti CHM (2004) Areas of endemism for passerine birds in Atlantic Forest, South America. Glob Ecol Biog 13:85–93

    Article  Google Scholar 

  • Stephens M, Donnelly P (2003) A comparison of Bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet 73:1162–1169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanzolini PE, Williams EE (1970) South American anoles: the geographic differentiation and evolution of the Anolis chrysolepis species group (Sauria: iguanidae). Arq Zool 19:1–298

    Article  Google Scholar 

  • Wallace AR (1852) On the monkeys of the Amazon. Proc Zool Soc London 20:107–110

    Google Scholar 

  • Weber LN, Gonzaga LP, Carvalho-e-Silva SP (2005) A New species of Physalaemus from the lowland Atlantic Forest of Rio de Janeiro State Brazil (Amphibia, Anura, Leptodactylidaea). Arq Mus Nac 63:677–684

    Google Scholar 

  • Weir JT, Schluter D (2008) Calibrating the avian molecular clock. Mol Ecol 17:2321–2328

    Article  CAS  PubMed  Google Scholar 

  • Whitney BM (2003) Family Conopophagidae. In: del Hoyo J, Elliot A, Christie DA (eds) Handbook of the birds of the world: Broadbills to Tapaculos, vol 8. Lynx Edicións, Barcelona, pp 732–747

    Google Scholar 

  • Willis EO, Oniki Y, Silva WR (1983) On the behaviour of Rufous Gnateaters (Conopophaga lineata, Formicariidae). Naturalia 8:67–93

    Google Scholar 

  • Zink RM, Barrowclough GF (2008) Mitochondrial DNA under siege in avian phylogeography. Mol Ecol 17:2107–2121

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by FAPEMIG (Fundação de Amparo a Pesquisa do Estado de Minas Gerais 17228), CNPq, FAPESP (BIOTA 2013/50297-0), NSF (DOB 1343578), NASA, CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), and the Research Center on Biodiversity and Computing (BioComp) of the Universidade de São Paulo (USP), supported by the USP Provost’s Office for Research. Gisele Dantas worked under a Post-doctoral grant CAPES/PNPD (2010/52590-8) and CNPq (503145/2009-2). We also thank the Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (Brazil), Instituto Florestal de São Paulo (Brazil), and Instituto Estadual de Florestas de Minas Gerais (Brazil) for the permits to collect samples (IBAMA/MMA no 03/2004 IBAMA/MMA: 011/2000, processes 1835/2000; 053/2001, 1835/00-07; 070/2002, 02015.001835/00-07; 207/2003, 02015.023482/98-38). We gratefully acknowledge the improvements in English usage made by Caitlin Stern through the Association of Field Ornithologists’ program of editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gisele Pires Mendonça Dantas.

Additional information

Communicated by J. Fjeldså.

Appendix

Appendix

See Table 5.

Table 5 Samples of Conopophaga lineata used in nuclear intron (FIB5) and Control region analysis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dantas, G.P.M., Sari, E.H.R., Cabanne, G.S. et al. Population genetic structure of the Atlantic Forest endemic Conopophaga lineata (Passeriformes: Conopophagidae) reveals a contact zone in the Atlantic Forest. J Ornithol 156, 85–99 (2015). https://doi.org/10.1007/s10336-014-1106-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-014-1106-0

Keywords

Navigation