Skip to main content

Advertisement

Log in

Land use factors determining occurrence of Red-necked Spurfowl (Pternistis afer) in the Drakensberg Midlands, South Africa

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

Conservation of forest associated birds depends on appropriate prediction of habitat change effects on their distribution patterns. We investigated a variety of land use gradients in an attempt to determine which factors influence site occupancy and detection of Red-necked Spurfowl (Pternistis afer) on farmland in the Drakensberg Midlands, South Africa. We used presence/absence data from 44 camera traps to estimate proportion of area occupied by the study species during October 2012–January 2013. Average occupancy rate of Red-necked Spurfowl was 0.42 ± 0.10 with a low detection probability 0.29 ± 0.04. Commercial forestry plantation influenced their presence positively while the index of human abundance negatively influenced the proportion of area occupied. Model selection indicated that cropland cultivation area had a strong negative effect on the detection probability of Red-necked Spurfowl while availability of indigenous forest patch and natural grassland influenced their detection positively. In the absence less presence of natural forest, commercial plantation forestry might have provided the next best possible habitat for this forest associated species where indigenous forest patches covering a small part of the landscape have extensively fragmented. These findings detailed the influence of land use variables as fragmentation and conversion of indigenous forest and grassland ecosystems into agricultural and human dominated areas affect the distribution of species that are highly selective towards forested habitats.

Zusammenfassung

Wie verschiedene Arten der Landnutzung das Vorkommen von Rotkehlfrankolinen ( Pternistis afer ) im Mittelland der Drakensberge in Südafrika beeinflussen

Die Erhaltung waldlebender Vögel beruht auf einer realistischen Einschätzung davon, wie Veränderungen im Lebensraum die Verteilung der Arten beeinflusst. Wir untersuchten verschiedene Formen der Landnutzung, um festzustellen, wie sie das Vorkommen und die Entdeckungsrate von Rotkehlfrankolinen (Pternistis afer) auf landwirtschaftlichen Nutzflächen im Mittelland der Drakensberge in Südafrika beeinflussten. Anhand von Anwesenheitsdaten aus 44 Kamerafallen erfassten wir das Gebiet, das unsere Studienart zwischen Oktober 2012 und Januar 2013 nutzte. Durchschnittliche Aufenthaltswahrscheinlichkeit der Rotkehlfrankoline war 0.42 ± 0.10, wobei die Entdeckungsrate mit 0.29 ± 0.04 gering war. Kommerzielle Forstwirtschaft beeinflusste das Vorkommen der Zielart positiv, während die Anwesenheit von Menschen sich negativ auf ihre Gebietsausdehnung auswirkte. Landwirtschaftlich genutzte Flächen hatten einen stark negativen Einfluss auf die Entdeckungsrate der Rotkehlfrankoline, während Waldgebiete mit einheimischen Pflanzen und naturbelassene Wiesen ihre Entdeckung wahrscheinlicher machten. Da ursprüngliche Waldgebiete auf sehr kleine und verstreute Landstücke reduziert wurden, scheinen gewerblich genutzte Waldflächen das nächstbeste Habitat für diese waldlebende Art darzustellen. Diese Ergebnisse verdeutlichen den Einfluss der Habitatfragmentierung und Umwandlung von ursprünglichen Wäldern und Wiesen in landwirtschaftlich genutzte und von Menschen dominierte Gebiete auf die Verteilung von Arten, die sehr an Waldgebiete gebunden sind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allan GA, Harrison JA, Navarro RA, VanWilgen BW, Thompson MW (1997) The impact of commercial afforestation on bird populations in Mpumalanga province, South Africa: insights from bird atlas data. Biol Conserv 79:173–185

    Google Scholar 

  • Armstrong AJ, van Hensbergen HJ, Scott DF, Milton SJ (1996) Are pine plantations ‘‘inhospitable seas’’ around remnant native habitat within South-western Cape forestry areas? S Afr For J 176:1–9

    Google Scholar 

  • BirdLife International (2004) State of the world’s birds 2004: indicators for our changing world. BirdLife International, Cambridge

    Google Scholar 

  • BirdLife International (2012) Francolinus afer, in: IUCN 2012. IUCN red list of threatened species. Version 2012.2 www.iucnredlist.org. Downloaded on 03 April 2013

  • Bollinger EX, Switzer PV (2002) Modeling the impact of edge avoidance on avian nest densities in habitat fragments. Ecol Appl 12:1567–1575

    Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Carbone C, Christie S, Conforti K, Coulson T, Franklin N, Ginsberg JR, Griffiths M, Holden J, Kawanishi K, Kinnaird M, Laidlaw R, Lynam A, Macdonald DW, Martyr D, McDougal C, Nath L, O’Brien T, Seidensticker J, Smith DJL, Sunquist M, Tilson R, Wan Shahruddin WN (2001) The use of photographic rates to estimate densities of tigers and other cryptic mammals. Anim Conserv 4:75–79

    Google Scholar 

  • Cody ML (1985) Habitat selection in grassland and open-country birds. In: Cody ML (ed) Habitat selection in birds. Academic Press, Orlando, pp 191–226

    Google Scholar 

  • Cooch E, White G (2005) Program mark: a gentle introduction. Available at: http://www.phidot.org/software/mark/docs/book

  • Coverdale BM (2006) The use of a geographic information system to investigate the effect of land-use change on wattled crane Bugeranus carunculatus breeding productivity in KwaZulu-Natal, South Africa. M.Sc. thesis, University of KwaZulu-Natal, Pietermaritzburg

  • Coverdale B, Daly B, Friedmann Y, Lemmer F, Marchant A, McCann K, Rushworth I, Wakelin J (2006) Oribi antelope (Ourebia ourebi) population and habitat viability assessment workshop report, Conservation Breeding Specialist Group (SSC/IUCN)/CBSG Southern Africa. Endangered Wildlife Trust, Johannesburg

    Google Scholar 

  • del Hoyo J, Elliott A, Sargatal J (1994) Handbook of the birds of the world, vol 2. Lynx Editions, Barcelona

    Google Scholar 

  • Downing BH (1978) Environmental consequences of agricultural expansion in South Africa since 1850. S Afr J Sci 74:420–422

    Google Scholar 

  • Eeley HAC, Lawes MJ, Piper SE (1999) The influence of climate change on the distribution of indigenous forest in KwaZulu-Natal, South Africa. J Biogeogr 26:595–617

    Google Scholar 

  • Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberon J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distribution from occurrence data. Ecography 29:129–151

    Google Scholar 

  • Estades CF, Temple SA (1999) Deciduous-forest bird communities in a fragmented landscape dominated by exotic pine plantations. Ecol Appl 9:573–585

    Google Scholar 

  • Fischer J, Brosi B, Daily GC, Ehrlich PR, Goldman R, Goldstein J, Lindenmayer DB, Manning AD, Mooney HA, Pejchar L, Ranganathan J, Tallis H (2008) Should agricultural policies encourage land sparing or wildlife-friendly farming? Front Ecol Environ 6:380–385

    Google Scholar 

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574

    CAS  Google Scholar 

  • GeoterraImage (2010) 2008 KZN Province Land-Cover Mapping (from SPOT5 Satellite imagery circa 2008). Prepared for Ezemvelo KZN Wildlife (Biodiversity Research), South Africa

  • Graham MH (2003) Confronting multicollinearity in ecological multiple regression. Ecology 84:2809–2815

    Google Scholar 

  • Gu W, Swihart RK (2004) Absent or undetected? Effects of nondetection of species occurrence on wildlife-habitat models. Biol Conserv 116:195–203

    Google Scholar 

  • Guisan A, Zimmerman NE (2000) Predictive habitat distribution models in ecology. Ecol Mod 135:147–186

    Google Scholar 

  • Happold DCD (1995) The interactions between humans and mammals in Africa in relation to conservation: a review. Biodiv Conserv 4:395–414

    Google Scholar 

  • Helle P, Muona J (1985) Invertebrate numbers in edges between clear-fellings and mature forests in northern Finland. Silva Fenn 19:281–294

    Google Scholar 

  • Herzon I, O’Hara RB (2007) Effects of landscape complexity on farmlands birds in the Baltic states. Agric Ecosyst Environ 118:297–306

    Google Scholar 

  • Hines JE (2006) PRESENCE-Software to estimate patch occupancy and related parameters. Available at: USGS-PWRC. http://www.mbr-pwrc.usgs.gov/software/presence.html

  • Jansen R, Little RM, Crowe TM (1999) Implications of grazing and burning grasslands on the sustain- able use of francolins (Francolinus spp.) and on overall bird conservation in the highlands of Mpumalanga province, South Africa. Biodiv Conserv 8:587–602

    Google Scholar 

  • Jansen R, Little RM, Crowe TM (2000) Habitat utilization and home range of the redwing francolin, Francolinus levaillantii, in highland grasslands, Mpumalanga province, South Africa. Afr J Ecol 38:329–338

    Google Scholar 

  • Jennersten O, Loman J, Møller A, Robertson J, Widen B (1992) Conservation biology in agricultural habitat islands. In: Hansson L (ed) Conservation biology by ecological principles. Elsevier, London, pp 396–425

    Google Scholar 

  • Killick D (1990) A field guide to the flora of the natal Drakensberg. Jonathan Ball and Ad, Dinker Publishers, Parklands

    Google Scholar 

  • Komen J (1987) Preliminary observations of the social patterns, behaviour and vocalizations of Hartlaub’s francolin. S Afr J Wildl Res 19:82–86

    Google Scholar 

  • Lack P (1992) Birds on lowland farms. HMSO, London

    Google Scholar 

  • Lauga J, Joachim J (1992) Modeling the effects of forest fragmentation on certain species of forest-breeding birds. Land Ecol 6:183–193

    Google Scholar 

  • Lawes MJ, Eeley HAC, Piper SE (2000) The relationship between local and regional diversity of indigenous forest fauna in KwaZulu-Natal Province, South Africa. Biodiv Conserv 9:683–705

    Google Scholar 

  • Little RM (2005) Red-necked Spurfowl Pternistis afer. In: Hockey PAR, Dean WRJ, Ryan PG (eds) Roberts birds of southern Africa. The Trustees of the John Voelcker Bird Book Fund, Cape Town, pp 73–74

    Google Scholar 

  • Little RM, Crowe TM (1993) The breeding biology of the greywing francolin Francolinus africanus and its implications for hunting and management. S Afr J Zool 28:6–12

    Google Scholar 

  • Little R, Crowe T (2011) Gamebirds of Southern Africa. Struik Nature, Cape Town

    Google Scholar 

  • Macfarlane DM (2000) Historical Change in the landscape pattern of indigenous forest in the Karkloof/Balgowan Region in the Midlands of KwaZulu-Natal. MSc thesis, University of Natal, Pietermaritzburg

  • Mackenzie DI (2005) What are the issues with presence–absence data for wildlife managers? J Wildl Manage 69:849–860

    Google Scholar 

  • MacKenzie DI, Nichols JD, Lachman GB, Droege S, Royle JA, Langtimm CA (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83:2248–2255

    Google Scholar 

  • MacKenzie DI, Nichols JD, Royle JA, Pollock KP, Bailey LL, Hines JE (2006) Occupancy estimation and modeling: inferring patterns and dynamics of species occurrence. Academic Press, New York

    Google Scholar 

  • Malan G, Benn GA (1999) Agricultural land-use patterns and the decline of the helmeted guineafowl Numida meleagris (Linnaeus 1766) in KwaZulu-Natal, South Africa. Agric Ecosyst Environ 73:29–40

    Google Scholar 

  • Martin TE (1988) Habitat and area effects on forest bird assemblages: is nest predation an influence? Ecology 69:74–84

    Google Scholar 

  • Maurer BA (1994) Geographical population analysis tools for the analysis of biodiversity. Blackwell, Oxford

    Google Scholar 

  • McIntyre S, Hobbs R (1999) A framework for conceptualizing human effects on landscapes and its relevance to management and research models. Conserv Biol 13:1282–1292

    Google Scholar 

  • Mentis MT (1973) A comparative ecological study of greywing and redwing francolins in the Natal Drakensberg. M.Sc. thesis, University of Stellenbosch

  • Mentis MT, Bigalke RC (1979) Some effects of fire on two grassland francolins in the Natal Drakensberg. S Afr J Wildl Res 9:1–8

    Google Scholar 

  • Mentis MT, Poggenpoel B, Maguire RRK (1975) Food of helmeted guineafowl in highland Natal. J S Afr Wildl Manage Assoc 5:23–25

    Google Scholar 

  • Montague-Drake R, Lindenmayer D, Cunningham R (2009) Factors affecting site occupancy by woodland bird species of conservation concern. Biol Conserv 142:2896–2903

    Google Scholar 

  • Moreby SJ, Aebischer NJ, Southway SE, Sotherton NW (1994) A comparison of the flora and arthropod fauna of organically and conventionally grown winter wheat in southern England. Ann Appl Biol 125:13–27

    Google Scholar 

  • Mucina L, Rutherford MC (2006) The vegetation of South Africa, Lesotho and Swaziland. Strelitzia 19, South African National Biodiversity Institute, Pretoria

  • Nicholls AO (1989) How to make biological surveys go further with generalised linear models. Biol Conserv 50:51–75

    Google Scholar 

  • Otis DL, Burnham KP, White GC, Anderson DR (1978) Statistical inference from capture data on closed animal populations. Wildl Monogr 62:1–135

    Google Scholar 

  • Pero LV, Crowe TM (1996) Helmeted guineafowl (Numida meleagris) in KwaZulu-Natal: a case for non-sustainability. S Afr J Wildl Res 26:123–140

    Google Scholar 

  • Radford JQ, Bennett AF (2007) The relative importance of landscape properties for woodland birds in agricultural environments. J Appl Ecol 44:737–747

    Google Scholar 

  • Radford JQ, Bennett AF, Cheers GJ (2005) Landscape-level thresholds of habitat cover for woodland-dependent birds. Biol Conserv 124:317–337

    Google Scholar 

  • Ramesh T, Kalle R, Sankar K, Qureshi Q (2013) Dry season factors determining habitat use and distribution of mouse deer (Moschiola indica) in the Western Ghats. Eur J Wildl Res 59:271–280

    Google Scholar 

  • Ratcliffe CS, Crowe TM (2001) Declining population of helmeted guineafowl in the Midlands of KwaZulu-Natal, South Africa: a review of causes and remedies. S Afr J Wildl Res 31:161–171

    Google Scholar 

  • Robinson RA, Sutherland W (2002) Post-war changes in arable farming and biodiversity in Great Britain. J Appl Ecol 39:157–176

    Google Scholar 

  • Rodríguez-Estrella R (2007) Land use changes affect distributional patterns of desert birds in the Baja California peninsula, Mexico. Diver Distri 13:877–889

    Google Scholar 

  • Rowe–Rowe DT (1992) The carnivores of Natal. Natal Parks Board, Pietermaritzburg

    Google Scholar 

  • Rowe–Rowe DT (1994) The ungulates of Natal. Natal Parks Board, Pietermaritzburg

    Google Scholar 

  • Sutherland WJ, Armstrong-Brown S, Armsworth PR et al (2006) The identification of 100 ecological questions of high policy relevance in the UK. J Appl Ecol 43:617–627

    Google Scholar 

  • Tobler MW, Carrillo-Percastegui SE, Powell G (2009) Habitat use, activity patterns and use of mineral licks by five species of ungulate in south-eastern Peru. J Trop Ecol 25:261–270

    Google Scholar 

  • Turner IM (1996) Species loss in fragments of tropical rain forest: a review of the evidence. J Appl Ecol 33:200–209

    Google Scholar 

  • Tyre AJ, Tenhumberg B, Field SA, Niejalke D, Paris K, Possingham HP (2003) Improving precision and reducing bias in biological surveys: estimating false negative error rates. Ecol Appl 13:1790–1801

    Google Scholar 

  • van Niekerk JH (2001) Social and breeding behaviour of crested francolin in the Rustenburg district, South Africa. S Afr J Wildl Res 31:35–42

    Google Scholar 

  • van Niekerk JH, van Ginkel CM (2003) Notes on behavioural ecology of coqui francolin in the Rustenburg district, South Africa. S Afr J Wildl Res 33:59–62

    Google Scholar 

  • van Niekerk JH, Barendse M, Mare F (2009) Behaviour of Red-necked spurfowl Pternistis afer in the Boknes and Cannon Rock coastal resorts, Alexandria district, Eastern Cape province, South Africa. Ostrich 80:43–45

    Google Scholar 

  • Vander Haegen WM, Dobler FC, Peirce DJ (2000) Shrubsteppe bird response to habitat and landscape variables in Eastern Washington, USA. Conserv Biol 14:1145–1160

    Google Scholar 

  • Vetter D, Hansbauer MM, Végvári Z, Storch I (2011) Predictors of forest fragmentation sensitivity in Neotropical vertebrates: a quantitative review. Ecography 34:1–8

    Google Scholar 

  • Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of earth’s ecosystems. Science 277:494–499

    CAS  Google Scholar 

  • Wakelin J, Hill TR (2007) The impact of land transformation on breeding Blue Swallows Hirundo atrocaerulea Sundevall, in Kwazulu-Natal, South Africa. J Nat Conserv 15:245–255

    Google Scholar 

  • Warner RE (1994) Agricultural land use and grassland habitat in Illinois: future shock for Midwestern birds. Conserv Biol 8:147–156

    Google Scholar 

  • Wethered R, Lawes MJ (2003) Matrix effects on bird assemblages in fragmented Afromontane forests in South Africa. Biol Conserv 114:327–340

    Google Scholar 

  • White GC, Burnham KP (1999) Program MARK: survival estimation from populations of marked animals. Bird Study 46:120–139

    Google Scholar 

  • Willson MF, De Santo TL, Sabag C, Armesto JJ (1994) Avian communities of fragmented south-temperate rainforests in Chile. Conserv Biol 8:508–520

    Google Scholar 

Download references

Acknowledgments

We would like to thank all the farming communities for their encouragement and support in our research activities. The College of Agriculture, Science and Engineering at the University of KwaZulu-Natal provided financial support for the Post Doctoral Research Programme. We thank K. Riddhika for her comments on the manuscript. We are grateful to C. Brown and K. O’Conner for logistic support during the course of field work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colleen T. Downs.

Additional information

Communicated by T. Gottschalk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramesh, T., Downs, C.T. Land use factors determining occurrence of Red-necked Spurfowl (Pternistis afer) in the Drakensberg Midlands, South Africa. J Ornithol 155, 471–480 (2014). https://doi.org/10.1007/s10336-013-1028-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-013-1028-2

Keywords

Navigation