Skip to main content

Advertisement

Log in

Rock Ptarmigan (Lagopus muta) breeding habitat use in northern Sweden

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

Alpine and arctic tundra regions are likely to retract as a result of climate warming and concerns have been raised over the status of the Rock Ptarmigan (Lagopus muta). In Fennoscandia, the Rock Ptarmigan has low population abundance, and predictions based on harvest statistics show population declines throughout the range. In this study, we used a long-term opportunistic dataset of Rock Ptarmigan observations, environmental predictors derived from a digital vegetation map and a digital elevation model to describe the breeding distribution at three different ecological scales. Patterns of spatial distribution were similar across all the three study scales. The presence of permanent snow-fields positively influenced the occurrence of Rock Ptarmigan at the territory and landscape scale. Open vegetation, rock-dominated areas and, in particular, dry heath influenced Rock Ptarmigan presence positively at all scales. Altitude and terrain heterogeneity were important variables at all scales, with higher probabilities of Rock Ptarmigan being present at intermediate altitude ranges, with a high degree of terrain heterogeneity. This is the first study to describe Rock Ptarmigan breeding distribution in Fennoscandia and our findings yield new insights into the environmental variables that are important for the spatial distribution of Rock Ptarmigan during the breeding season. When planning conservation efforts, this information should be used to inform management regarding the protection of core areas and buffer zones related to the conservation and harvest management of the Rock Ptarmigan.

Zusammenfassung

Bruthabitatnutzung beim Alpenschneehuhn ( Lagopus muta ) in Nordschweden

Es ist zu erwarten, dass alpine und arktische Tundralebensräume in Folge der Klimaerwärmung schrumpfen, und es wurden bereits Bedenken bezüglich des Status des Alpenschneehuhns (Lagopus muta) laut. In Fennoskandinavien kommt das Alpenschneehuhn in geringer Populationsdichte vor, und Prognosen auf der Grundlage von Jagdstatistiken zeigen Bestandsrückgänge im gesamten Verbreitungsgebiet. Für diese Studie verwendeten wir einen über einen längeren Zeitraum gesammelten Datensatz mit Zufallsbeobachtungen von Alpenschneehühnern, dazu unabhängige Umweltvariablen aus einer digitalen Vegetationskarte und ein digitales Höhenmodell, um die Brutverbreitung auf drei verschiedenen ökologischen Ebenen zu beschreiben. Die räumlichen Verbreitungsmuster waren für alle drei in der Studie betrachteten Ebenen ähnlich. Das Vorhandensein dauerhafter Schneefelder hatte einen positiven Einfluss auf das Vorkommen von Alpenschneehühnern, sowohl auf Revier- als auch auf Landschaftsebene. Offene Vegetation, felsenreiche Flächen und speziell trockenes Heideland beeinflussten das Vorkommen von Alpenschneehühnern auf allen drei Ebenen positiv. Die Variablen „Höhenstufe“ und „Heterogenität des Geländes“ waren auf jeder Ebene wichtig; die Wahrscheinlichkeit eines Alpenschneehuhn-Vorkommens war in mittleren Höhenlagen mit starker Geländeheterogenität höher. Dies ist die erste Untersuchung, die sich mit der Brutverbreitung des Alpenschneehuhns in Fennoskandinavien befasst, und unsere Befunde liefern neue Erkenntnisse darüber, welche Umweltvariablen für die räumliche Verteilung der Alpenschneehühner während der Brutzeit von Bedeutung sind. Bei der Planung von Naturschutzmaßnahmen sollten den für das Schutz- und Jagdmanagement Verantwortlichen die für die Gewährleistung von Kernund Pufferzonen relevanten Informationen zur Verfügung gestellt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aanes S, Engen S, Saether BE, Willebrand T, Marcstrom V (2002) Sustainable harvesting strategies of willow ptarmigan in a fluctuating environment. Ecol Appl 12(1):281–290

    Google Scholar 

  • Anderson L, Rafstedt T, Sydow von U, Dahlskog S, Grundsten C (1985) Vegetation of Swedish mountain area. Norrbottens County. A survey on the basis of vegetation mapping and assessment of natural values. Statens Naturvaardsverk, Solna (in Swedish with English summary)

  • Andersson L (2008) Vegetationskartering. Sveriges kartläggning, tillägg 1998–2007. Kartografiska Sällskapet, Gävle (in Swedish)

  • Barbet-Massin M, Jiguet F, Albert CH, Thuiller W (2012) Selecting pseudo-absences for species distribution models: how, where and how many? Method Ecol Evol 3:327–338

    Article  Google Scholar 

  • Bech N, Boissier J, Drovetski S, Novoa C (2009) Population genetic structure of rock ptarmigan in the ‘sky islands’ of French Pyrenees: implications for conservation. Anim Conser 12:138–146

    Article  Google Scholar 

  • Booms TM, Lindgren M, Huettmann T (2011) Linking Alaska’s predicted climate, gyrfalcon, and ptarmigan distributions in space and time: a unique 200-year perspective. In: Watson RT, Cade TJ, Fuller M, Hunt G, Potapov E (eds) Gyrfalcons and Ptarmigan in a changing World. The Peregrine Fund, Boise, pp 1–14

    Google Scholar 

  • Bossert A (1995) Bestandsentwicklung und Habitatnutzung des Alpenschneehuhns Lagopus mutus im Aletschgebiet (Schweizer Alpen). Ornithol Beob 92(3):307–314 (in German)

    Google Scholar 

  • Boyce MS (2006) Scale for resource selection functions. Divers Distrib 12:269–276

    Article  Google Scholar 

  • Braunisch V, Suchant R (2010) Predicting species distributions based on incomplete survey data: the trade-off between precision and scale. Ecography 33:826–840

    Article  Google Scholar 

  • Brodsky LM (1988) Mating tactics of male rock ptarmigan Lagopus mutus: a conditional mating strategy. Anim Behav 36:335–342

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2004) Multimodel inference-understanding AIC and BIC in model selection. Sociol Method Res 33:261–304

    Article  Google Scholar 

  • Byholm P, Burgas D, Virtanen T, Valkama J (2012) Competitive exclusion within the predator community influences the distribution of a threatened prey species. Ecology 93:1802–1808

    Article  PubMed  Google Scholar 

  • Cotter R (1999) The reproductive biology of rock ptarmigan (Lagopus mutus) in the central Canadian Arctic. Arctic 52:23–32

    Google Scholar 

  • Cotter R, Boag DA (1992) Rapotor predation on rock ptarmigan (Lagopus mutus) in the central Canadian Arctic. J Raptor Res 26:146–151

    Google Scholar 

  • Cotter RC, Gratto CJ (1995) Effects of nest and brood visits and radio transmitters on rock ptarmigan. J Wildl Manag 59:93–98

    Article  Google Scholar 

  • Del Hoyo J, Elliott A, Sargatal J (eds) (1994) Handbook of the birds of the world, Lynx, Barcelona

  • Elith J, Leathwick J (2007) Predicting species distributions from museum and herbarium records using multiresponse models fitted with multivariate adaptive regression splines. Divers Distrib 13:265–275

    Article  Google Scholar 

  • Eriksson T, Andersson J, Byström P, Hörnell-Willebrand M, Laitila T, Sandström C, Willebrand T (2006) Fish and wildlife in the Swedish mountain region: resources, use and management. Int J Biodivers Sci Manag 2(4):334–342

    Google Scholar 

  • Favaron M, Scherini GC, Preatoni D, Tosi G, Wauters LA (2006) Spacing behaviour and habitat use of rock ptarmigan (Lagopus mutus) at low density in the Italian Alps. J Ornithol 147:618–628

    Article  Google Scholar 

  • Fedy B, Martin K (2011) The influence of fine-scale habitat features on regional variation in population performance of alpine white-tailed ptarmigan. Condor 113:306–315

    Article  Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49

    Article  Google Scholar 

  • Frederick GP, Gutierrez RJ (1992) Habitat use and population characteristics of the white-tailed ptarmigan in the Sierra-Nevada California. Condor 94:889–902

    Article  Google Scholar 

  • Freeman EA, Moisen G (2008) PresenceAbsence: an R package for presence-absence model analysis. J Stat Softw 23(11):1–31

    Google Scholar 

  • Gardarsson A (1988) Cyclic population changes and some related events in rock ptarmigan in Iceland. University of Minnesota Press, Minneapolis

  • Graf RF, Bollmann K, Suter W, Bugmann H (2005) The importance of spatial scale in habitat models: capercaillie in the Swiss Alps. Landsc Ecol 20:703–717

    Article  Google Scholar 

  • Gregory RD, Van Strien A, Vorisek P, Meyling AWG, Noble DG, Foppen RPB, Gibbons DW (2005) Developing indicators for European birds. Philos Trans R Soc Lond B 360:269–288

    Article  Google Scholar 

  • Gudmundsson F (1972) Grit as an indicator of overseas origin of certain birds occurring in Iceland. Ibis 114:582

    Google Scholar 

  • Hannon SJ, Martin K (2006) Ecology of juvenile grouse during the transition to adulthood. J Zool 269:422–433

    Article  Google Scholar 

  • Hannon SJ, Eason PK, Martin K (1998) The birds of North America retrieved from the birds of North America Online: http://bna.birds.cornell.edu.bnaproxy.birds.cornell.edu/bna/species/369. doi:10.2173/bna.369

  • Hauser DW, Vanblaricom GR, Holmes EE, Osborne RW (2006) Evaluating the use of whale watch data in determining killer whale (Orcinus orca) distribution patterns. J Cetacean Res Manag 8(3):273–281

    Google Scholar 

  • Hofgaard A, Harper KA, Golubeva E (2012) The role of circum-arctic forest-tundra ecotone for arctic biodiversity. Biodiversity 13(3–4):174–181

    Article  Google Scholar 

  • Holder K, Montgomerie R (1993) Context and consequences of comb displays by male rock ptarmigan. Anim Behav 45:457–470

    Article  Google Scholar 

  • Hörnell-Willebrand M (2005) Temporal and spatial dynamics of willow grouse Lagopus lagopus. Doctoral dissertation, Swedish Agricultural University

  • Hörnell-Willebrand M (2012) Sammanställning avskjutningsstatistik statens mark i Jämtland Västerbotten och Norrbotten Technical report-working document www.lansstyrelsen.se (in Swedish)

  • Huntley B, Collingham YC, Willis SG, Green RE (2008) Potential impacts of climatic change on European breeding birds. PLoS ONE 3(1):e1439

    Article  PubMed Central  PubMed  Google Scholar 

  • Johnson CJ, Nielsen SM, Merrill EH, Mcdonald TL, Boyce MS (2006) Resource selection functions based on use-availability data: theoretical motivation and evaluation methods. J Wildl Manag 70:347–357

    Article  Google Scholar 

  • Kaler RSA, Ebbert SE, Braun CE, Sandercock BK (2010) Demography of a reintroduced population of Evermann’s rock ptarmigan in the Aleutian islands. Wilson J Ornithol 122:1–14

    Article  Google Scholar 

  • Kudo G (1991) Effects of snow-free period on the phenology of alpine plants inhabiting snow patches. Arctic Alpine Res 23:436–443

    Article  Google Scholar 

  • Kullman L (1979) Change and stability in the altitude of the birch tree-limit in the southern Swedish Scandes 1915–1975. Acta Phytogeogr Suecia 65:1–121

    Google Scholar 

  • Kullman L (2005) On the presence of late-glacial trees in the Scandes. J Biogeogr 32:1499–1500

    Article  Google Scholar 

  • Länsstyrelsen (2012) Ripinventeringar. http://www.lansstyrelsen.se (in Swedish)

  • Lantmäteriet (2008) Vegetationsdata. Description vegetation types, version 1.1. Beskrivning av vegetationstyper, version 1.1. (in Swedish)

  • Maindonald J, Braun WJ (2013) DAAG: Data analysis and graphics data and functions. R package version 1.16. http://CRAN.R-project.org/package=DAAG

  • Martin K (2001) Wildlife communities in alpine and subalpine habitats. In: Johnson D (ed) Wildlife-Habitat Relationships in Oregon and Washington. Oregon University Press, Corvallis, pp 239–260

    Google Scholar 

  • Martin K, Wilson S (2011) Ptarmigan in North America: influence of life history and environmental conditions on population persistence. In: Watson RT, Cade TJ, Fuller M, Hunt G, Potapov E (eds) Gyrfalcons and ptarmigan in a changing world. The Peregrine Fund, Boise, pp 45–54

    Google Scholar 

  • Marty E, Mossoll-Torres M (2012) Point-count method for estimating rock ptarmigan spring density in the Pyrenean chain. Eur J Wildl Res 58:357–363

    Article  Google Scholar 

  • Mayor SJ, Schneider DC, Schaefer JA, Mahoney SP (2009) Habitat selection at multiple scales. Ecoscience 16:238–247

    Article  Google Scholar 

  • Moss R, Storch I, Muller M (2010) Trends in grouse research. Wildl Biol 16:1–11

    Article  Google Scholar 

  • Myers-Smith IH, Forbes BC, Wilmking M, Hallinger M, Lantz T, Blok D, Tape KD, Macias-Fauria M, Sass-Klaassen U, Levesque E, Boudreau S, Ropars P, Hermanutz L, Trant A, Collier LS, Weijers S, Rozema J, Rayback SA, Schmidt NM, Schaepman-Strub G, Wipf S, Rixen C, Menard CB, Venn S, Goetz S, Andreu-Hayles L, Elmendorf S, Ravolainen V, Welker J, Grogan P, Epstein HE, Hik DS (2011) Shrub expansion in tundra ecosystems: dynamics impacts and research priorities. Environ Res Lett 6:1–15

    Article  Google Scholar 

  • Nagelkerke NJD (1991) A note on a general definition of the coefficient of determination. Biometrika 78:691–692

    Article  Google Scholar 

  • Nielsen OK (1999) Gyrfalcon predation on ptarmigan: numerical and functional responses. J Anim Ecol 68:1034–1050

    Article  Google Scholar 

  • Nielsen OK (2011) Harvest and population change of rock ptarmigan in Iceland. In: Watson RT, Cade TJ, Fuller M, Hunt G, Potapov E (eds) Gyrfalcons and ptarmigan in a changing world. The Peregrine Fund, Boise, pp 71–72

    Google Scholar 

  • Nielsen OK, Bjornsson H (1997) Rock Ptarmigan studies at Kvisker southeast Iceland 1963 to 1995. Natturufroeingurinn 66:115–122 (in Icelandic)

    Google Scholar 

  • Nilsen EB, Pedersen S, Brøseth H, Pedersen HC (2012) Fjellryper. En kunnskapsoversikt. NINA Rapport: 38 (in Norwegian)

  • Nopp-Mayr U, Zohmann M (2008) Spring densities and calling activities of rock ptarmigan (Lagopus muta helvetica) in the Austrian Alps. J Ornithol 149:135–139

    Article  Google Scholar 

  • Novoa C, Besnard A, Brenot JF, Ellison LN (2008) Effect of weather on the reproductive rate of rock ptarmigan Lagopus muta in the eastern Pyrenees. Ibis 150:270–278

    Article  Google Scholar 

  • Novoa C, Desmet JF, Brenot JF, Muffat-Joly B, Arvin-Bérod M, Resseguir J, Tran B (2011) Demographic traits of two alpine populations of rock ptarmigan. In: Sandercock BK, Martin K, Segelbacher G (eds) Ecology conservation and management of grouse. University of California Press, Los Angeles, pp 267–280

    Google Scholar 

  • Nystrom J, Ekenstedt J, Angerbjorn A, Thulin L, Hellstrom P, Dalen L (2006) Golden eagles on the Swedish mountain tundra-diet and breeding success in relation to prey fluctuations. Ornis Fenn 83:145–152

    Google Scholar 

  • Ottosson U, Ottvall R, Elmberg J, Green M, Gustafsson R, Haas F, Holmqvist N, Lindström Å, Nilsson L, Svensson M, Svensson S, Tjernberg M (2012) Fåglarna i Sverige-antal och förekomst. Swedish Ornithological Society, Halmstad

    Google Scholar 

  • Pearce J, Ferrier S (2000) Evaluating the predictive performance of habitat models developed using logistic regression. Ecol Model 133:225–245

    Article  Google Scholar 

  • Pedersen HC, Karlsen DH (2007) Alt om rypa Biologi jakt og forvaltning. Tun Forlag (in Norwegian)

  • Pedersen HC, Steen H, Kastdalen L, Broseth H, Ims RA, Svendsen W, Yoccoz NG (2004) Weak compensation of harvest despite strong density-dependent growth in willow ptarmigan. Proc R Soc Lond B 271:381–385

    Article  CAS  Google Scholar 

  • Pedersen ÅØ, Jepsen JU, Yoccoz NG, Fuglei E (2007) Ecological correlates of the distribution of territorial Svalbard rock ptarmigan (Lagopus muta hyperborea). Can J Zool 85:122–132

    Article  Google Scholar 

  • Pedersen ÅØ, Bårdsen BJ, Yoccoz NG, Lecomte N, Fuglei E (2012) Monitoring Svalbard rock ptarmigan: distance sampling and occupancy modeling. J Wildl Manag 76:308–316

    Article  Google Scholar 

  • Pedrini P, Sergio F (2002) Regional conservation priorities for a large predator: golden eagles (Aquila chrysaetos) in the Alpine range. Biol Conserv 103:163–172

    Article  Google Scholar 

  • Post E, Forchhammer MC, Bret-Harte MS, Callaghan TV, Christensen TR, Elberling B, Fox AD, Gilg O, Hik DS, Hoye TT, Ims RA, Jeppesen E, Klein DR, Madsen J, Mcguire AD, Rysgaard S, Schindler DE, Stirling I, Tamstorf MP, Tyler NJC, Van Der Wal R, Welker J, Wookey PA, Schmidt NM, Aastrup P (2009) Ecological dynamics across the Arctic associated with recent climate change. Science 325:1355–1358

    Article  CAS  PubMed  Google Scholar 

  • Pulliam HR, Danielson BJ (1991) Sources, sinks, and habitat selection: a landscape perspective on population dynamics. Am Nat 137:S50–S66

    Google Scholar 

  • R Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rettie WJ, Messier F (2000) Hierarchical habitat selection by woodland caribou: its relationship to limiting factors. Ecography 23:466–478

    Article  Google Scholar 

  • Revermann R, Schmid H, Zbinden N, Spaar R, Schroder B (2012) Habitat at the mountain tops: how long can rock ptarmigan (Lagopus muta helvetica) survive rapid climate change in the Swiss Alps? A multi-scale approach. J Ornithol 153:891–905

    Article  Google Scholar 

  • Rosenfield RN, Schneider JW, Seegar W (1995) Prey of peregrine falcons breeding in west Greenland. Condor 97:763–770

    Article  Google Scholar 

  • Sandercock BK, Nilsen EB, Broseth H, Pedersen HC (2011) Is hunting mortality additive or compensatory to natural mortality? Effects of experimental harvest on the survival and cause-specific mortality of willow ptarmigan. J Anim Ecol 80:244–258

    Article  PubMed  Google Scholar 

  • Sappington JM, Longshore KM, Thompson DB (2007) Quantifying landscape ruggedness for animal habitat analysis: a case study using bighorn sheep in the Mojave Desert. J Wildl Manag 71:1419–1426

    Article  Google Scholar 

  • Sardà-Palomera F, Brotons L, Villero D, Sierdsema H, Newson SE, Jiguet F (2012) Mapping from heterogeneous biodiversity monitoring data sources. Biodivers Conserv 21:2927–2948

    Article  Google Scholar 

  • Sawa Y, Takeuchi Y, Nakamura H (2011) Nest site selection and nesting biology of rock ptarmigan Lagopus muta japonicus in Japan. Bird Study 58:200–207

    Article  Google Scholar 

  • Schweiger AK, Nopp-Mayr U, Zohmann M (2012) Small-scale habitat use of black grouse (Tetrao tetrix L) and rock ptarmigan (Lagopus muta helvetica Thienemann) in the Austrian Alps. Eur J Wildl Res 58:35–45

    Article  Google Scholar 

  • Sinclair PH, Nixon WA, Hughes NL, Eckert CD (2003) Birds of the Yukon Territory. University of British Columbia Press

  • Snall T, Kindvall O, Nilsson J, Part T (2011) Evaluating citizen-based presence data for bird monitoring. Biol Conserv 144:804–810

    Article  Google Scholar 

  • Stokland JN, Halvorsen R, Stoa B (2011) Species distribution modelling: effect of design and sample size of pseudo-absence observations. Ecol Model 222:1800–1809

    Article  Google Scholar 

  • Storch IE (2007) Grouse: status and conservation action plan 2006–2010. World Pheasant Association, Fordingbridge

  • Tømmeraas JP (1993) The status of Gyrfalcon Falco rusticolus research in northern Fennoscandia 1992. Cinclus 16:75–82

    Google Scholar 

  • Unander S, Steen JB (1985) Behaviour an social structure in Svalbard rock ptarmigan Lagopus mutus hyperboreus. Ornis Scand 16:198–204

    Article  Google Scholar 

  • Väre H (2001) Mountain birch taxonomy and floristics of mountain birch woodlands. In: Wielgolaski FE (ed) Nordic Mountain Birch Ecosystems. UNESCO, Carnforth, pp 35–46

    Google Scholar 

  • Virkkala R, Heikkinen RK, Leikola N, Luoto M (2008) Projected large-scale range reductions of northern-boreal land bird species due to climate change. Biol Conserv 141:1343–1353

    Article  Google Scholar 

  • Watson A (1956) The annual cycle of rock ptarmigan. PhD thesis, University of Aberdeen

  • Watson A, Moss R (2008) Grouse. Collins, London

  • Watson A, Moss R, Rae S (1998) Population dynamics of Scottish rock ptarmigan cycles. Ecology 79:1174–1192

    Article  Google Scholar 

  • Weeden RB (1964) Spatial separation of sexes in rock and willow ptarmigan in winter. Auk 81:534–541

    Article  Google Scholar 

  • Weeden RB (1967) Seasonal and geographic variation in the foods of adult White-tailed Ptarmigan. Condor 69:303–309

    Article  Google Scholar 

  • Weeden RB (1969) Foods of rock and willow ptarmigan in central Alaska with comments on interspecific competition. Auk 86:271–281

    Article  Google Scholar 

  • Wiebe KL, Martin K (2000) The use of incubation behavior to adjust avian reproductive costs after egg laying. Behav Ecol Sociobiol 48:463–470

    Article  Google Scholar 

  • Willebrand T, Hörnell M (2001) Understanding the effects of harvesting willow ptarmigan Lagopus lagopus in Sweden. Wildl Biol 7:205–212

    Google Scholar 

  • Willebrand T, Hörnell-Willebrand M, Asmyhr L (2011) Willow grouse bag size is more sensitive to variation in hunter effort than to variation in willow grouse density. Oikos 120:1667–1673

    Article  Google Scholar 

  • Wilson S, Martin K (2008) Breeding habitat selection of sympatric White-tailed Rock and Willow ptarmigan in the southern Yukon Territory Canada. J Ornithol 149:629–637

    Article  Google Scholar 

  • Wilson S, Martin K (2011) Life-history and demographic variation in an alpine specialist at the latitudinal extremes of the range. Popul Ecol 53:459–471

    Article  Google Scholar 

  • Wilson S, Martin K (2012) Influence of life history strategies on sensitivity, population growth and response to climate for sympatric alpine birds. BMC Ecol 12:9

    Article  PubMed  Google Scholar 

  • Wong MML (2010) Niche partitioning and spatial variation in abundance of Rock (Lagopus muta) and White-tailed Ptarmigan (L. leucura): A case of habitat selection at multiple scales. Master thesis, University of Alberta

  • Yoccoz N, Nichols JD, Boulinier T (2001) Monitoring of biological diversity in space and time. Trends Ecol Evol 16:446–453

    Article  Google Scholar 

  • Yoder JM, Marschall EA, Swanson DA (2004) The cost of dispersal: predation as a function of movement and site familiarity in ruffed grouse. Behav Ecol 15:469–476

    Article  Google Scholar 

  • Zohmann M, Wöss M (2008) Spring density and summer habitat use of alpine rock ptarmigan Lagopus muta helvetica in the south eastern Alps. Eur J Wildl Res 54:379–383

    Article  Google Scholar 

Download references

Acknowledgments

Funding for the study was provided by the Nordic Council of Ministers (NCM) Arctic Cooperation Programme 2009–2011 (project number A11601), the Norwegian Polar Institute and Hedmark University College. We thank Degitu Borecha Endale, Tomas Willebrand and two anonymous reviewers for valuable contributions to the manuscript, Oddveig Øien Ørvoll and Anders Skoglund for graphical assistance and Bernt Bye and Mats Högström for technical GIS assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Åshild Ø. Pedersen.

Additional information

Communicated by F. Bairlein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pedersen, Å.Ø., Blanchet, MA., Hörnell-Willebrand, M. et al. Rock Ptarmigan (Lagopus muta) breeding habitat use in northern Sweden. J Ornithol 155, 195–209 (2014). https://doi.org/10.1007/s10336-013-1001-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-013-1001-0

Keywords

Navigation