Skip to main content

Advertisement

Log in

Metabolic fingerprint of patients showing responsiveness to treatment of septic shock in intensive care unit

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objective

An early metabolic signature associated with the responsiveness to treatment can be useful in the better management of septic shock patients. This would help clinicians in designing personalized treatment protocols for patients showing non-responsiveness to treatment.

Methods

We analyzed the serum on Day 1 (n = 60), Day 3 (n = 47), and Day 5 (n = 26) of patients with septic shock under treatment using NMR-based metabolomics. Partial least square discriminant analysis (PLS-DA) was performed to generate the list of metabolites that can be identified as potential disease biomarkers having statistical significance (that is, metabolites that had a VIP score > 1, and p value < 0.05, False discovery rate (FDR) < 0.05).

Results

Common significant metabolites amongst the three time points were obtained that distinguished the patients being responsive (R) and non-responsive (NR) to treatments, namely 3 hydroxybutyrate, lactate, and phenylalanine which were lower, whereas glutamate and choline higher in patients showing responsiveness.

Discussion

The study gave these metabolic signatures identifying patients’ responsiveness to treatment. The results of the study will aid in the development of targeted therapy for ICU patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Keeley A, Hine P, Nsutebu E (2017) The recognition and management of sepsis and septic shock: a guide for non-intensivists. Postgrad Med J 93:626–634. https://doi.org/10.1136/POSTGRADMEDJ-2016-134519

    Article  PubMed  Google Scholar 

  2. Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kievlan DR et al (2020) Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the global burden of disease study. Lancet 395:200–211. https://doi.org/10.1016/S0140-6736(19)32989-7

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kaukonen K-M, Bailey M, Suzuki S, Pilcher D, Bellom R (2014) Mortality related to severe sepsis and septic shock among critically ill patients in Australia and New Zealand, 2000–2012. JAMA 311:1308–1316. https://doi.org/10.1001/JAMA.2014.2637

    Article  CAS  PubMed  Google Scholar 

  4. Vincent J-L, Jones G, David S, Olariu E, Cadwell KK (2019) Frequency and mortality of septic shock in Europe and North America: a systematic review and meta-analysis. Crit Care. https://doi.org/10.1186/S13054-019-2478-6

    Article  PubMed  PubMed Central  Google Scholar 

  5. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M et al (2016) The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315:801–810. https://doi.org/10.1001/JAMA.2016.0287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jones AE, Trzeciak S, Kline JA (2009) The sequential organ failure assessment score for predicting outcome in patients with severe sepsis and evidence of hypoperfusion at the time of emergency department presentation. Crit Care Med 37:1649. https://doi.org/10.1097/CCM.0B013E31819DEF97

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M et al (2017) Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med 43:304–377. https://doi.org/10.1007/S00134-017-4683-6

    Article  PubMed  Google Scholar 

  8. Fleischmann C, Scherag A, Adhikari NKJ, Hartog CS et al (2016) Assessment of global incidence and mortality of hospital-treated sepsis current estimates and limitations. Am J Respir Crit Care Med 193:259–272. https://doi.org/10.1164/RCCM.201504-0781OC

    Article  CAS  PubMed  Google Scholar 

  9. Wong HR, Cvijanovich NZ, Anas N, Allen GL et al (2015) Developing a clinically feasible personalized medicine approach to pediatric septic shock. Am J Respir Crit Care Med 191:309–315. https://doi.org/10.1164/RCCM.201410-1864OC

    Article  PubMed  PubMed Central  Google Scholar 

  10. Russell C, Rahman A, Mohammed AR (2013) Application of genomics, proteomics and metabolomics in drug discovery, development and clinic. Ther Deliv 4:395–413. https://doi.org/10.4155/TDE.13.4

    Article  CAS  PubMed  Google Scholar 

  11. Kaddurah-Daouk R, Krishnan KRR (2008) Metabolomics: a global biochemical approach to drug response and disease. Annu Rev Pharmacol Toxicol 48:653–683. https://doi.org/10.1146/ANNUREV.PHARMTOX.48.113006.094715

    Article  CAS  PubMed  Google Scholar 

  12. Balashova EE, Maslov DL, Lokhov PG (2018) A metabolomics approach to pharmacotherapy personalization. J Pers Med. https://doi.org/10.3390/JPM8030028

    Article  PubMed  PubMed Central  Google Scholar 

  13. Siddiqui MA, Pandey S, Azim A, Sinha N, Siddiqui MH (2020) Metabolomics: an emerging potential approach to decipher critical illnesses. Biophys Chem. https://doi.org/10.1016/j.bpc.2020.106462

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mickiewicz B, Vogel HJ, Wong HR, Winston BW (2013) Metabolomics as a novel approach for early diagnosis of pediatric septic shock and its mortality. Am J Respir Crit Care Med 187:967–976. https://doi.org/10.1164/rccm.201209-1726OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mardegan V, Giordano G, Stocchero M, Pirillo P, Poloniato G, Donadel E et al (2021) Untargeted and targeted metabolomic profiling of preterm newborns with early-onset sepsis: a case-control study. Metabolites 11:1–15. https://doi.org/10.3390/metabo11020115

    Article  CAS  Google Scholar 

  16. Liu Z, Triba MN, Amathieu R, Lin X, Bouchemal N, Hantz E et al (2019) Nuclear magnetic resonance-based serum metabolomic analysis reveals different disease evolution profiles between septic shock survivors and non-survivors. Crit Care 23:1–12. https://doi.org/10.1186/S13054-019-2456-Z

    Article  Google Scholar 

  17. Jaurila H, Koivukangas V et al (2020) 1 H NMR based metabolomics in human sepsis and healthy serum. Metabolites. https://doi.org/10.3390/METABO10020070

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wang J, Sun Y, Teng S, Li K (2020) Prediction of sepsis mortality using metabolite biomarkers in the blood: a meta-analysis of death-related pathways and prospective validation. BMC Med 18:1–15. https://doi.org/10.1186/S12916-020-01546-5

    Article  Google Scholar 

  19. Garcia-Simon M, Morales JM, Modesto-Alapont V, Gonzalez-Marrachelli V, Vento-Rehues R, Jorda-Miñana A et al (2015) Prognosis biomarkers of severe sepsis and septic shock by 1H NMR urine metabolomics in the intensive care unit. PLoS ONE 10:e0140993. https://doi.org/10.1371/journal.pone.0140993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jaurila H, Koivukangas V, Koskela M, Gäddnäs F, Myllymaa S, Kullaa A et al (2020) 1H NMR based metabolomics in human sepsis and healthy serum. Metabolites 10:1–13. https://doi.org/10.3390/metabo10020070

    Article  CAS  Google Scholar 

  21. Ferrario M, Cambiaghi A, Brunelli L, Giordano S, Caironi P, Guatteri L et al (2016) Mortality prediction in patients with severe septic shock: a pilot study using a target metabolomics approach. Sci Reports 6:1–11. https://doi.org/10.1038/srep20391

    Article  CAS  Google Scholar 

  22. Cambiaghi A, Díaz R, Martinez JB, Odena A, Brunelli L, Caironi P et al (2018) An innovative approach for the integration of proteomics and metabolomics data in severe septic shock patients stratified for mortality. Sci Rep 8:6681. https://doi.org/10.1038/s41598-018-25035-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu Z, Yin P, Amathieu R, Savarin P, Xu G (2016) Application of LC-MS-based metabolomics method in differentiating septic survivors from non-survivors. Anal Bioanal Chem 408:7641–7649. https://doi.org/10.1007/s00216-016-9845-9

    Article  CAS  PubMed  Google Scholar 

  24. Mickiewicz B, Tam P, Jenne CN, Leger C, Wong J, Winston BW et al (2015) Integration of metabolic and inflammatory mediator profiles as a potential prognostic approach for septic shock in the intensive care unit. Crit Care 19:11. https://doi.org/10.1186/s13054-014-0729-0

    Article  PubMed  PubMed Central  Google Scholar 

  25. Su L, Huang Y, Zhu Y, Xia L, Wang R, Xiao K et al (2014) Discrimination of sepsis stage metabolic profiles with an LC/MS-MS-based metabolomics approach. BMJ Open Respir Res 1:e000056. https://doi.org/10.1136/bmjresp-2014-000056

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mickiewicz B, Duggan GE, Winston BW, Doig C, Kubes P, Vogel HJ (2014) Metabolic profiling of serum samples by 1H nuclear magnetic resonance spectroscopy as a potential diagnostic approach for septic shock. Crit Care Med. https://doi.org/10.1097/CCM.0000000000000142

    Article  PubMed  Google Scholar 

  27. Dalli J, Colas RA, Quintana C, Barragan- D, Hurwitz S, Levy BD et al (2018) Human sepsis eicosanoid and pro-resolving lipid mediator temporal profiles: correlations with survival and clinical outcomes. Crit Care Med 45:58–68. https://doi.org/10.1097/CCM.0000000000002014.Human

    Article  Google Scholar 

  28. Langley RJ, Tsalik EL, van Velkinburgh JC, Glickmanm SW et al (2014) An integrated clinico-metabolomic model improves prediction of death in sepsis. Bone 23:1–7. https://doi.org/10.1126/scitranslmed.3005893.An

    Article  Google Scholar 

  29. Hussain H, Vutipongsatorn K, Jiménez B, Antcliffe DB (2022) Patient stratification in sepsis: using metabolomics to detect clinical phenotypes, sub-phenotypes and therapeutic response. Metabolites 12(5):376. https://doi.org/10.3390/metabo12050376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cambiaghi A, Pinto BB, Brunelli L, Falcetta F, Aletti F, Bendjelid K, Pastorelli R, Ferrario M (2017) Characterization of a metabolomic profile associated with responsiveness to therapy in the acute phase of septic shock. Sci Rep 7(1):9748. https://doi.org/10.1038/s41598-017-09619-x

    Article  PubMed  PubMed Central  Google Scholar 

  31. Stoessel D, Stellmann J-P, Willing A, Behrens B, Rosenkranz SC, Hodecker SC, Stürner KH, Reinhardt S, Fleischer S, Deuschle C, Maetzler W, Berg D, Heesen C, Walther D, Schauer N, Friese MA, Pless O (2018) Metabolomic profiles for primary progressive multiple sclerosis stratification and disease course monitoring. Front Hum Neurosci 12:226. https://doi.org/10.3389/fnhum.2018.00226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Westerhuis JA, Hoefsloot HCJ, Smit S, Vis DJ, Smilde AK, van Velzen EJJ, van Duijnhoven JPM, van Dorsten FA (2008) Assessment of PLSDA cross validation. Metabolomics. https://doi.org/10.1007/s11306-007-0099-6

    Article  Google Scholar 

  33. Colquhoun D (2014) An investigation of the false discovery rate and the misinterpretation of p values. R Soc opensci 1:140216. https://doi.org/10.1098/rsos.140216

    Article  Google Scholar 

  34. Ruokonen E, Takala J, Kari A, Alhava E (1991) Septic shock and multiple organ failure. Crit Care Med 19:1146–1151. https://doi.org/10.1097/00003246-199109000-00009

    Article  CAS  PubMed  Google Scholar 

  35. Ferreira FL, Bota DP, Bross A, Mélot C, Vincent J-L (2001) Serial evaluation of the SOFA score to predict outcome in critically ill patients. JAMA 286:1754–1758. https://doi.org/10.1001/JAMA.286.14.1754

    Article  CAS  PubMed  Google Scholar 

  36. Levy MM, Macias WL, Vincent J-L, Russell JA, Silva E, Trzaskoma B, Williams MD (2005) Early changes in organ function predict eventual survival in severe sepsis. Crit Care Med 33:2194–2201. https://doi.org/10.1097/01.CCM.0000182798.39709.84

    Article  PubMed  Google Scholar 

  37. Maciel AT, Noritomi DT, Park M (2010) Metabolic acidosis in sepsis. Endocr Metab Immune Disord Drug Targets 10:252–257. https://doi.org/10.2174/187153010791936900

    Article  CAS  PubMed  Google Scholar 

  38. Garcia-Alvarez M, Marik P, Bellomo R (2014) Sepsis-associated hyperlactatemia. Crit Care 18:1–11. https://doi.org/10.1186/S13054-014-0503-3

    Article  Google Scholar 

  39. Lee SM, An WS (2016) New clinical criteria for septic shock: serum lactate level as new emerging vital sign. J Thorac Dis 8:1388. https://doi.org/10.21037/JTD.2016.05.55

    Article  PubMed  PubMed Central  Google Scholar 

  40. Davids MR, Segal AS, Brunengraber H, Halperin ML (2004) An unusual cause for ketoacidosis. QJM 97:365–376. https://doi.org/10.1093/QJMED/HCH064

    Article  CAS  PubMed  Google Scholar 

  41. Hahn PY, Wang P, Tait SM, Ba ZF, Reich SS, Chaudry IH (1995) Sustained elevation in circulating catecholamine levels during polymicrobial sepsis. Shock 4:269–273. https://doi.org/10.1097/00024382-199510000-00007

    Article  CAS  PubMed  Google Scholar 

  42. Chao Wu, Wang X, Wenkui Yu, Tian F et al (2015) Hypermetabolism in the initial phase of intensive care is related to a poor outcome in severe sepsis patients. Ann Nutr Metab 66:188–195. https://doi.org/10.1159/000430848

    Article  CAS  Google Scholar 

  43. Frankenfield DC, Omert LA, Badellino MM et al (1994) Correlation between measured energy expenditure and clinically obtained variables in trauma and sepsis patients. JPEN J Parenter Enteral Nutr 18:398–403. https://doi.org/10.1177/0148607194018005398

    Article  CAS  PubMed  Google Scholar 

  44. Grey NJ, Karl I, Kipnis DM (1975) Physiologic mechanisms in the development of starvation ketosis in man. Diabetes 24:10–16. https://doi.org/10.2337/DIAB.24.1.10

    Article  CAS  PubMed  Google Scholar 

  45. Geisler S, Gostner JM, Becker K, Ueberall F, Fuchs D (2013) Immune activation and inflammation increase the plasma phenylalanine-to-tyrosine ratio. Pteridines 24:27–31. https://doi.org/10.1515/PTERID-2013-0001

    Article  CAS  Google Scholar 

  46. Jeremias IC, Victorino VJ et al (2016) The role of acetylcholine in the inflammatory response in animals surviving sepsis induced by cecal ligation and puncture. Mol Neurobiol 53:6635–6643. https://doi.org/10.1007/S12035-015-9538-Y

    Article  CAS  PubMed  Google Scholar 

  47. Poeze M, Luiking YC, Breedveld P (2008) Decreased plasma glutamate in early phases of septic shock with acute liver dysfunction is an independent predictor of survival. Clin Nutr 27:523–530. https://doi.org/10.1016/J.CLNU.2008.04.006

    Article  CAS  PubMed  Google Scholar 

  48. Zhang Y, Yu W, Han D, Meng J, Wang H, Cao G (2019) L–lysine ameliorates sepsis-induced acute lung injury in a lipopolysaccharide-induced mouse model. Biomed Pharmacother 118:109307. https://doi.org/10.1016/J.BIOPHA.2019.109307

    Article  CAS  PubMed  Google Scholar 

  49. Luiking YC, Deutz NEP (2007) Biomarkers of arginine and lysine excess. J Nutr 137:1662S-1668S. https://doi.org/10.1093/JN/137.6.1662S

    Article  CAS  PubMed  Google Scholar 

  50. Merz TM, Pereira AJ, Schürch R, Schefold JC, Jakob SM, Takala J et al (2017) Mitochondrial function of immune cells in septic shock: a prospective observational cohort study. PLoS ONE 12:e0178946. https://doi.org/10.1371/JOURNAL.PONE.0178946

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kitamura H, Yamauchi A, Sugiura T et al (1998) Inhibition of myo-inositol transport causes acute renal failure with selective medullary injury in the rat. Kidney Int 53:146–153. https://doi.org/10.1046/J.1523-1755.1998.00747.X

    Article  CAS  PubMed  Google Scholar 

  52. Izquierdo-Garcia JL, Nin N, Cardinal-Fernandez P, Rojas Y, De Paula M, Granados R et al (2019) Identification of novel metabolomic biomarkers in an experimental model of septic acute kidney injury. Am J Physiol Ren Physiol 316:54–62. https://doi.org/10.1152/ajprenal.00315.2018

    Article  CAS  Google Scholar 

  53. Hasselgren PO, Fischer JE (1998) Sepsis: stimulation of energy-dependent protein breakdown resulting in protein loss in skeletal muscle. World J Surg 22:203–208. https://doi.org/10.1007/S002689900370

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors acknowledge Centre of Biomedical Research for providing the infrastructure and resources and Centre of Scientific and Industrial Research(CSIR), INDIA, for research fellowship.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

NS, AA and SP conceptualized and designed the methodology of the study. NS, AA and SP investigated the study. NS and AA provided the resources and supervised the study. NS and AA administered the project. NS provided financial support for the project. Formal analysis using software, data curation and validation was performed by SP. Patient sample and clinical data collection by MAS and SP. Visualization and original draft preparation by SP. Final draft review and editing by SP, MAS, AA and NS. All authors approved the final submission.

Corresponding author

Correspondence to Neeraj Sinha.

Ethics declarations

Conflict of interest

The authors have disclosed that they do not have any potential conflicts of interest.

Ethical approval

The study was approved by the Institutional Ethical Committee of Sanjay Gandhi Post Graduate Institute of Medical Sciences with IEC code:2018-170-PhD-107 and approval code: PEG/BI/37/2019 and date of approval 28.01.19.

Informed consent statement

Informed consent was obtained from all subjects involved in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 884 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, S., Siddiqui, M.A., Azim, A. et al. Metabolic fingerprint of patients showing responsiveness to treatment of septic shock in intensive care unit. Magn Reson Mater Phy 36, 659–669 (2023). https://doi.org/10.1007/s10334-022-01049-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-022-01049-9

Keywords

Navigation