Skip to main content

Advertisement

Log in

Metabolite interactions in prostatic fluid mimics assessed by 1H NMR

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Introduction

Molecular interactions in prostatic fluid are of biological interest and may affect MRI and MRS of the prostate. We investigated the existence of interactions between the major components of this fluid: spermine, citrate and myoinositol, metal ions, including zinc, and proteins.

Materials and methods

Solutions of 90 mM citrate, 18 mM spermine and 6 mM myo-inositol, mimicking expressed prostatic fluid, were investigated by 1H NMR using changes in T2 relaxation and chemical shift as markers for interactions.

Results and discussion

Adding to this metabolite mixture the ions Na+ , K+, Ca++, Mg++ and Zn++, decreased the T2 relaxation times of citrate and spermine protons by factors of 3 and 2, respectively, with Zn++ causing the largest effect, indicating ion–metabolite interactions. The T2 of 18 mM spermine dropped by a factor of 2 upon addition with 90 mM citrate, but no effect on T2 was seen with myo-inositol pointing to a specific citrate-spermine interaction. Moreover, the T2 of citrate in the presence of spermine decreased by adding metal ions and increasing amounts of Zn++, indicating complexation of citrate and spermine with metal ions, particularly with Zn. The addition of bovine serum albumin (BSA), as an index protein, substantially further decreased the T2 of spermine and citrate implying the formation of a transient spermine-metal ion-citrate-BSA complex.

Finally, we found that the T2 of citrate in extracellular fluid of prostate cancer cells, as a mimic of fluid in cancerous prostates, decreased by adding fetal calf serum, indicating protein binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kurhanewicz J, Vigneron DB (2016) Magnetic resonance spectroscopy of prostate cancer. Emagres 5(1):923–943

    Article  CAS  Google Scholar 

  2. Tayari N, Heerschap A, Scheenen TWJ, Kobus T (2017) In vivo MR spectroscopic imaging of the prostate, from application to interpretation. Anal Biochem. https://doi.org/10.1016/j.ab.2017.02.001

    Article  PubMed  Google Scholar 

  3. Kobus T, Vos PC, Hambrock T, Rooij MD, de Kaa CAH-V, Barentsz JO et al (2012) Prostate cancer aggressiveness. in vivo assessment of MR spectroscopy and diffusion-weighted imaging at 3 T. Radiology 265:457–467

    Article  PubMed  Google Scholar 

  4. van Asten JJA, Cuijpers V, Hulsbergen-van de Kaa C, Soede-Huijbregts C, Witjes JA, Verhofstad A et al (2008) High resolution magic angle spinning NMR spectroscopy for metabolic assessment of cancer presence and Gleason score in human prostate needle biopsies. Magn Reson Mater Phy 21:435–442

    Article  CAS  Google Scholar 

  5. Tayari N, Wright AJ, Heerschap A (2021) Absolute choline tissue concentration mapping for prostate cancer localization and characterization using 3D 1H MRSI without water-signal suppression. Magn Reson Med 00:1–13

    Google Scholar 

  6. Gholizadeh N, Greer PB, Simpson J, Goodwin J, Fu C, Lau P, Heerschap A, Ramadan S (2021) Diagnosis of transition zone prostate cancer by multiparametric MRI: added value of MR spectroscopic imaging with sLASER volume selection. J Biomed Sci 28(1):54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tuerkbey B, Bernardo M, Merino MJ, Wood BJ, Pinto PA, Choyke PL (2012) MRI of localized prostate cancer: coming of age in the PSA era. Diagn Interv Radiol 18:34–45

    Google Scholar 

  8. Lynch MJ, Nicholson JK (1997) Proton MRS of human prostatic fluid: Correlations between citrate, spermine, and myo-inositol levels and changes with disease. Prostate 30:248–255

    Article  CAS  PubMed  Google Scholar 

  9. Kline EE, Treat EG, Averna TA, Davis MS, Smith AY, Sillerud LO (2006) Citrate concentrations in human seminal fluid and expressed prostatic fluid determined via 1H nuclear magnetic resonance spectroscopy outperform prostate specific antigen in prostate cancer detection. J Urol 176:2274–2279

    Article  CAS  PubMed  Google Scholar 

  10. Fukatsu A, Ono Y, Ito M, Yoshino Y, Hattori R, Gotoh M et al (2003) Relationship between serum prostate-specific antigen and calculated epithelial volume. Urology 61:370–374

    Article  PubMed  Google Scholar 

  11. Cheng LL, Wu C, Smith MR, Gonzalez RG (2001) Non-destructive quantitation of spermine in human prostate tissue samples using HRMAS 1H NMR spectroscopy at 9.4 T. FEBS Lett 494:112–116

    Article  CAS  PubMed  Google Scholar 

  12. Serkova NJ, Gamito EJ, Jones RH, O’Donnell C, Brown JL, Green S et al (2008) The metabolites citrate, myo-inositol, and spermine are potential age-independent markers of prostate cancer in human expressed prostatic secretions. Prostate 68:620–628

    Article  CAS  PubMed  Google Scholar 

  13. Kavenagh J (1985) Sodium, potassium, calcium, magnesium, zinc, citrate and chloride content of human prostatic and seminal fluid. J Reprod Fertil 75:35–41

    Article  Google Scholar 

  14. van der Graaf M, Heerschap A (1996) Effect of cation binding on the proton chemical shifts and the spin–spin coupling constant of citrate. J Magn Reson B 112(1):58–62

    Article  PubMed  Google Scholar 

  15. Moore G, Sillerud L (1994) The pH-dependence of chemical-shift and spin-spin coupling for citrate RID E-7184-2010. J Magn Reson B 103:87–88

    Article  CAS  PubMed  Google Scholar 

  16. Zaichick V, Zaichick S (2020) A systematic review of the trace element concentrations in the prostate fluid of normal gland. Am J Biomed Sci Res 6(6):001093. https://doi.org/10.34297/AJBSR.2020.06.001093

    Article  Google Scholar 

  17. Zaichick VY, Sviridova TV, Zaichick SV (1996) Zinc concentration in human prostatic fluid: normal, chronic prostatitis, adenoma and cancer. Int Urol Nephrol 28:687–694

    Article  CAS  PubMed  Google Scholar 

  18. Zaichick S, Zaichick V (2013) Relations of morphometric parameters to zinc content in paediatric and nonhyperplastic young adult prostate glands. Andrology 1:139–146

    Article  CAS  PubMed  Google Scholar 

  19. Costello LC, Franklin RB (2008) Prostatic fluid electrolyte composition for the screening of prostate cancer: a potential solution to a major problem. Prostate Cancer Prostatic Dis 12:17–24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Spencer NG, Eykyn TR, deSouza NM, Payne GS (2010) The effect of experimental conditions on the detection of spermine in cell extracts and tissues. NMR Biomed 23:163–169

    CAS  PubMed  Google Scholar 

  21. Li R, Guo Y, Han BM, Yan X, Utleg AG, Li W et al (2008) Proteomics cataloging analysis of human expressed prostatic secretions reveals rich source of biomarker candidates. Proteomics Clin Appl 2:543–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Utleg AG, Yi EC, Xie T, Shannon P, White JT, Goodlett DR et al (2003) Proteomic analysis of human prostasomes. Prostate 56:150–161

    Article  CAS  PubMed  Google Scholar 

  23. Duncan MW, Thompson HS (2007) Proteomics of semen and its constituents. Proteomics Clin Appl 1:861–875

    Article  CAS  PubMed  Google Scholar 

  24. Drake RR, Elschenbroich S, Lopez-Perez O, Kim Y, Ignatchenko V, Ignatchenko A et al (2010) In-depth proteomic analyses of direct expressed prostatic secretions. J Proteome Res 9:2109–2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kim Y, Ignatchenko V, Yao CQ, Kalatskaya I, Nyalwidhe JO, Lance RS et al (2012) Identification of differentially expressed proteins in direct expressed prostatic secretions of men with organ-confined versus extracapsular prostate cancer. Mol Cell Proteomics 11:1870–1884

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Drake RR, White KY, Fuller TW, Igwe E, Clements MA, Nyalwidhe JO et al (2009) Clinical collection and protein properties of expressed prostatic secretions as a source for biomarkers of prostatic disease. J Proteomics 72:907–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nagano K, Masters JR, Akpan A, Yang A, Corless S, Wood C et al (2003) Differential protein synthesis and expression levels in normal and neoplastic human prostate cells and their regulation by type I and II interferons. Oncogene 23:1693–1703

    Article  CAS  Google Scholar 

  28. Ummanni R, Junker H, Zimmermann U, Venz S, Teller S, Giebel J et al (2008) Prohibitin identified by proteomic analysis of prostate biopsies distinguishes hyperplasia and cancer. Cancer Lett 266:171–185

    Article  CAS  PubMed  Google Scholar 

  29. Francis GL (2010) Albumin and mammalian cell culture: implications for biotechnology applications. Cytotechnology 62:1–16. https://doi.org/10.1007/s10616-010-9263-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bryan N, Andrews KD, Loughran MJ, Rhodes NP, Hunt JA (2011) Elucidating the contribution of the elemental composition of fetal calf serum to antigenic expression of primary human umbilical-vein endothelial cells in vitro. Biosci Rep 31(3):199–210

    Article  CAS  PubMed  Google Scholar 

  31. Vanhamme L, Van Den Boogaart A, Van Huffel S (1997) Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J Magn Reson 129:35–43

    Article  CAS  PubMed  Google Scholar 

  32. Stefan D et al (2009) Quantitation of magnetic resonance spectroscopy signals: the jMRUI software package. Meas Sci Technol 20:104035

    Article  CAS  Google Scholar 

  33. Milon BC, Agyapong A, Bautista R, Costello LC, Franklin RB (2010) Ras responsive element binding protein-1 (RREB-1) down-regulates hZIP1 expression in prostate cancer cells. Prostate 70:288–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zou J, Milon BC, Desouki MM, Costello LC, Franklin RB (2011) hZIP1 zinc transporter down-regulation in prostate cancer involves the overexpression of ras responsive element binding protein-1 (RREB-1). Prostate 71:1518–1524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Willker W, Flögel U, Leibfritz D (1998) A 1H/13C inverse 2D method for the analysis of the polyamines putrescine, spermidine and spermine in cell extracts and biofluids. NMR Biomed 11(2):47–54

    Article  CAS  PubMed  Google Scholar 

  36. Fielding L (2007) NMR methods for the determination of protein–ligand dissociation constants. Prog Nucl Magn Reson Spectrosc 51:219–242

    Article  CAS  Google Scholar 

  37. Gann PH, Chatterton R, Vogelsong K, Grayhack JT, Lee C (1997) Epidermal growth factor-related peptides in human prostatic fluid: sources of variability in assay results. Prostate 32:234–240

    Article  CAS  PubMed  Google Scholar 

  38. Averna TA, Kline EE, Smith AY, Sillerud LO (2005) A decrease in 1H nuclear magnetic resonance spectroscopically determined citrate in human seminal fluid accompanies the development of prostate adenocarcinoma. J Urol. https://doi.org/10.1097/01.ju.0000148949.72314.d7

    Article  PubMed  Google Scholar 

  39. Kriat M, Confortgouny S, Viondury J, Sciaky M, Viout P, Cozzone PJ (1992) Quantitation of metabolites in human blood-serum by proton magnetic-resonance spectroscopy—a comparative-study of the use of formate and TSP as concentration standards. NMR Biomed 5:179–184

    Article  CAS  PubMed  Google Scholar 

  40. Lynch MJ, Masters J, Pryor JP, Lindon JC, Spraul M, Foxall PJD et al (1994) Ultra high field NMR spectroscopic studies on human seminal fluid, seminal vesicle and prostatic secretions. J Pharm Biomed Anal 12:5–19

    Article  CAS  PubMed  Google Scholar 

  41. Tomlins AM, Foxall PJ, Lynch MJ, Parkinson J, Everett JR, Nicholson JK (1998) High resolution 1H NMR spectroscopic studies on dynamic biochemical processes in incubated human seminal fluid samples. Biochim Biophys Acta 1379:367–380

    Article  CAS  PubMed  Google Scholar 

  42. Arver S (1980) Zinc and zinc ligands in human seminal plasma1 methodological aspects and normal findings. Int J Androl 3:629–642

    Article  CAS  PubMed  Google Scholar 

  43. Arver S, Eliasson R (1982) Zinc and zinc ligands in human seminal plasma. 2. Contribution by ligands of different origin to the zinc-binding properties of human seminal plasma. Acta Physiol Scand 115:217–224

    Article  CAS  PubMed  Google Scholar 

  44. Costello LC, Fenselau CC, Franklin RB (2011) Evidence for operation of the direct zinc ligand exchange mechanism for trafficking, transport, and reactivity of zinc in mammalian cells. J Inorg Biochem 105:589–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Daykin CA, Bro R, Wulfert F (2012) Data handling for interactive metabolomics: tools for studying te dynamics of metabolome-mcromolecule interactions. Metabolomics 8:S52–S63

    Article  CAS  Google Scholar 

  46. Zhao Q, Sun Z-J, Zhang Q, Xing S-K, Liu M, Sun D-Z et al (2009) Densities and apparent molar volumes of myo-inositol in aqueous solutions of alkaline earth metal salts at different temperatures. Thermochim Acta 487:1–7

    Article  CAS  Google Scholar 

  47. Sun D, Zheng W, Qu X, Li L (2007) Enthalpies of dilution for myo -inositol in aqueous alkali metal salt and alkaline earth metal salt solutions. J Chem Eng Data 52:898–901

    Article  CAS  Google Scholar 

  48. Swanson MG, Zektzer AS, Tabatabai ZL, Simko J, Jarso S, Keshari KR, Schmitt L, Carroll PR, Shinohara K, Vigneron DB, Kurhanewicz J (2006) Quantitative analysis of prostate metabolites using 1H HR-MAS spectroscopy. Magn Reson Med 55:1257–1264

    Article  CAS  PubMed  Google Scholar 

  49. Jupin M, Michiels PJ, Girard FC, Spraul M, Wijmenga SS (2013) NMR identification of endogenous metabolites interacting with fatted and non-fatted human serum albumin in blood plasma: fatty acids influence the HSA–metabolite interaction. J Magn Reson 228:81–94

    Article  CAS  PubMed  Google Scholar 

  50. Kavanagh JP (1994) Isocitric and citric acid in human prostatic and seminal fluid: Implications for prostatic metabolism and secretion. Prostate 24:139–142

    Article  CAS  PubMed  Google Scholar 

  51. Zheng X, Baker H, Hancock WS, Fawaz F, McCaman M, Pungor E (2006) Proteomic analysis for the assessment of different lots of fetal bovine serum as a raw material for cell culture. Part IV. Application of proteomics to the manufacture of biological drugs. Biotechnol Prog 22(5):1294–1300

    Article  CAS  PubMed  Google Scholar 

  52. Scheenen TWJ, Gambarota G, Weiland E, Klomp DWJ, Fütterer JJ, Barentsz JO et al (2005) Optimal timing for in vivo1H-MR spectroscopic imaging of the human prostate at 3T. Magn Reson Med 53:1268–1274

    Article  CAS  PubMed  Google Scholar 

  53. Weis J, Ortiz-Nieto F, Ahlström H (2013) MR spectroscopy of the prostate at 3T: Measurements of relaxation times and quantification of prostate metabolites using water as an internal reference. Magn Reson Med Sci 12:289–296

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was partly supported by GO-EFRO project “Ultrasense NMR” and CMI project “PET/MR”. We thank Prof. Sybren Wijmenga for help in starting up this project, Kees Jansen for assistance with cell culture and Sjaak van Asten and Frank Nelissen for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arend Heerschap.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

No animals or human subjects were included in this study and no ethical approval is required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1156 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jupin, M., van Heijster, F.H.A. & Heerschap, A. Metabolite interactions in prostatic fluid mimics assessed by 1H NMR. Magn Reson Mater Phy 35, 683–694 (2022). https://doi.org/10.1007/s10334-021-00983-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-021-00983-4

Keywords

Navigation