Skip to main content
Log in

A USPIO doped gel phantom for R2* relaxometry

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objective

This work describes a phantom containing regions of controlled R2* (1/T2*) values to provide a stable reference object for testing implementations of R2* relaxometry commonly used for liver and heart iron assessments.

Materials and methods

A carrageenan-strengthened gadolinium DTPA doped agarose gel was used to enclose nine gels additionally doped with ultra-small superparamagnetic iron oxide. R2* values were determined at 1.5 T using multi-echo GRE sequences and exponential regression of pixel values from a region of interest against echo time using non-linear regression algorithms. We measured R2*, R2 and R1 values and the inter-scan and inter-operator reproducibility.

Results

The phantom reliably demonstrated R2* values in seven steps between 22.4 s−1 (SE 1.98) and 441.9 s−1 (SE 6.76), with an R2* relaxivity (r2*) of 792 (SE 5.6) mM−1 s−1. The doped gels displayed a concentration-dependent R2ʹ component of R2* phantom, indicating superparamagnetic enhancement effects. We observed no significant change in relaxivity (r2*) over 12 months, and estimate a useful life of 3 years. Detailed descriptions of the production process and calculators are been provided as Online Resources.

Conclusion

The phantom provides a durable test object with controlled R2* relaxation behaviour, useful for a range of R2* relaxometry reference work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Doyle FH, Pennock JM, Banks LM et al (1982) Nuclear magnetic resonance imaging of the liver: initial experience. Am J Roentgenol 138:193–200

    Article  CAS  Google Scholar 

  2. Stark DD, Moseley ME, Bacon BR, Moss AA, Goldberg HI, Bass NM, James TL (1985) Magnetic resonance imaging and spectroscopy of hepatic iron overload. Radiology 154:137–142

    Article  CAS  PubMed  Google Scholar 

  3. Brasch RC, Wesbey GE, Gooding CA, Koerper MA (1984) Magnetic resonance imaging of transfusional hemosiderosis complicating thalassemia major. Radiology 150:767–771

    Article  CAS  PubMed  Google Scholar 

  4. Bonkovsky HL, Rubin RB, Cable EE, Davidoff A, Rijcken TH, Stark DD (1999) Hepatic iron concentration: noninvasive estimation by means of MR imaging techniques. Radiology 212:227–234

    Article  CAS  PubMed  Google Scholar 

  5. Kaltwasser JP, Gottschalk R, Schalk KP, Hartl W (1990) Non-invasive quantitation of liver iron-overload by magnetic resonance imaging. Br J Haematol 74:360–363

    Article  CAS  PubMed  Google Scholar 

  6. Anderson LJ, Holden S, Davis B et al (2001) Cardiovascular T2-star (T2*) magnetic resonance for the early diagnosis of myocardial iron overload. Eur Heart J 22:2171–2179

    Article  CAS  PubMed  Google Scholar 

  7. Wang ZJ, Haselgrove JC, Martin MB, Hubbard AM, Li S, Loomes K, Moore JR, Zhao H, Cohen AR (2002) Evaluation of iron overload by single voxel MRS measurement of liver T2. J Magn Reson Imaging 15:395–400

    Article  PubMed  Google Scholar 

  8. Noetzli LJ, Papudesi J, Coates TD, Wood JC (2009) Pancreatic iron loading predicts cardiac iron loading in thalassemia major. Blood 114:4021–4026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Papakonstantinou O, Alexopoulou E, Economopoulos N et al (2009) Assessment of iron distribution between liver, spleen, pancreas, bone marrow, and myocardium by means of R2 relaxometry with MRI in patients with β-thalassemia major. J Magn Reson Imaging 29:853–859

    Article  PubMed  Google Scholar 

  10. Bloch F, Hansen WW, Packard M (1946) The nuclear induction experiment. Phys Rev 70:474

    Article  CAS  Google Scholar 

  11. Bloembergen N, Purcell EM, Pound RV (1948) Relaxation effects in nuclear magnetic resonance absorption. Phys Rev 73:679–712

    Article  CAS  Google Scholar 

  12. Berdoukas V, Chouliaras G, Moraitis P, Zannikos K, Berdoussi E, Ladis V (2009) The efficacy of iron chelator regimes in reducing cardiac and hepatic iron in patients with thalassaemia major: a clinical observational study. J Cardiovasc Magn Reson 11:20

    Article  PubMed  PubMed Central  Google Scholar 

  13. Brown GC, Patton WN, Tapp HE, Taylor DJ, St Pierre TG (2012) Spin density projection-assisted R2 magnetic resonance imaging of the liver in the management of body iron stores in patients receiving multiple red blood cell transfusions: an audit and retrospective study in South Australia. Intern Med J 42:990–996

    CAS  PubMed  Google Scholar 

  14. Wermke M, Schmidt A, Middeke JM et al (2012) MRI-based liver iron content predicts for nonrelapse mortality in MDS and AML patients undergoing allogeneic stem cell transplantation. Clin Cancer Res 18:6460–6468

    Article  CAS  PubMed  Google Scholar 

  15. Yardumian A, Telfer P, Constatinou G et al (2008) Iron load-monitoring and treatment. In: Yardumian A (ed) Standards for the clinical care of children and adults with Thalassaemia in the UK, 2nd edn. United Kingdom Thalassaemia Society, London

  16. Cappellini MD, Cohen A, Eleftheriou A, Piga A, Porter J, Taher A (2008) Iron overload. In: Eleftheriou A (ed) Guidelines for the clinical management of Thalassaemia, 2nd revised edn. Thalassaemia International Federation, Nicosia Cyprus

  17. Pennell DJ, Udelson JE, Arai AE et al (2013) Cardiovascular function and treatment in beta-thalassemia major: a consensus statement from the American Heart Association. Circulation 128:281–308

    Article  CAS  PubMed  Google Scholar 

  18. St Pierre TG, Clark PR, Chua-anusorn W, Fleming AJ, Jeffrey GP, Olynyk JK, Pootrakul P, Robins E, Lindeman R (2005) Noninvasive measurement and imaging of liver iron concentrations using proton magnetic resonance. Blood 105:855–861

    Article  CAS  PubMed  Google Scholar 

  19. St Pierre TG, El-Beshlawy A, Elalfy M, Al Jefri A, Al Zir K, Daar S, Habr D, Kriemler-Krahn U, Taher A (2014) Multicenter validation of spin-density projection-assisted R2-MRI for the noninvasive measurement of liver iron concentration. Magn Reson Med 71:2215–2223

    Article  CAS  PubMed  Google Scholar 

  20. Kirk P, Roughton M, Porter JB et al (2009) Cardiac T2* magnetic resonance for prediction of cardiac complications in thalassemia major. Circulation 120:1961–1968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pennell DJ, Porter JB, Cappellini MD et al (2010) Efficacy of deferasirox in reducing and preventing cardiac iron overload in β-thalassemia. Blood 115:2364–2371

    Article  CAS  PubMed  Google Scholar 

  22. Piga A, Longo F, Origa R, Roggero S, Pinna F, Zappu A, Castiglioni C, Cappellini MD (2014) Deferasirox for cardiac siderosis in beta-thalassaemia major: a multicentre, open label, prospective study. Br J Haematol 167:423–426

    Article  CAS  PubMed  Google Scholar 

  23. Wood JC, Zhang P, Rienhoff H, Abi-Saab W, Neufeld E (2014) R2 and R2* are equally effective in evaluating chronic response to iron chelation. Am J Hematol 89:505–508

    Article  CAS  PubMed  Google Scholar 

  24. Wood JC, Enriquez C, Ghugre N, Tyzka JM, Carson S, Nelson MD, Coates TD (2005) MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion-dependent thalassemia and sickle cell disease patients. Blood 106:1460–1465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Garbowski MW, Carpenter JP, Smith G, Roughton M, Alam MH, He T, Pennell DJ, Porter JB (2014) Biopsy-based calibration of T2* magnetic resonance for estimation of liver iron concentration and comparison with R2 Ferriscan. J Cardiovasc Magn Reson 16:40

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hankins JS, McCarville MB, Loeffler RB et al (2009) R2* magnetic resonance imaging of the liver in patients with iron overload. Blood 113:4853–4855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Westwood MA, Anderson LJ, Firmin DN, Gatehouse PD, Lorenz CH, Wonke B, Pennell DJ (2003) Interscanner reproducibility of cardiovascular magnetic resonance T2* measurements of tissue iron in thalassemia. J Magn Reson Imaging 18:616–620

    Article  PubMed  Google Scholar 

  28. Westwood M, Anderson LJ, Firmin DN, Gatehouse PD, Charrier CC, Wonke B, Pennell DJ (2003) A single breath-hold multiecho T2* cardiovascular magnetic resonance technique for diagnosis of myocardial iron overload. J Magn Reson Imaging 18:33–39

    Article  PubMed  Google Scholar 

  29. Westwood MA, Firmin DN, Gildo M, Renzo G, Stathis G, Markissia K, Vasili B, Pennell DJ (2005) Intercentre reproducibility of magnetic resonance T2* measurements of myocardial iron in thalassaemia. Int J Cardiovasc Imaging 21:531–538

    Article  PubMed  Google Scholar 

  30. Tanner MA, He T, Westwood MA, Firmin DN, Pennell DJ, Thalassemia International Federation Heart T2* Investigators (2006) Multi-center validation of the transferability of the magnetic resonance T2* technique for the quantification of tissue iron. Haematologica 91:1388–1391

    CAS  PubMed  Google Scholar 

  31. Kirk P, He T, Anderson LJ et al (2010) International reproducibility of single breathhold T2* MR for cardiac and liver iron assessment among five thalassemia centers. J Magn Reson Imaging 32:315–319

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ghugre NR, Enriquez CM, Coates TD, Nelson MD Jr, Wood JC (2006) Improved R2* measurements in myocardial iron overload. J Magn Reson Imaging 23:9–16

    Article  PubMed  PubMed Central  Google Scholar 

  33. Beaumont M, Odame I, Babyn PS, Vidarsson L, Kirby-Allen M, Cheng HL (2009) Accurate liver T2 measurement of iron overload: a simulations investigation and in vivo study. J Magn Reson Imaging 30:313–320

    Article  PubMed  Google Scholar 

  34. Otto R, Ferguson MR, Marro K, Grinstead JW, Friedman SD (2011) Limitations of using logarithmic transformation and linear fitting to estimate relaxation rates in iron-loaded liver. Pediatr Radiol 41:1259–1265

    Article  PubMed  Google Scholar 

  35. Yablonskiy DA (1998) Quantitation of intrinsic magnetic susceptibility-related effects in a tissue matrix. Phantom study. Magn Reson Med 39:417–428

    Article  CAS  PubMed  Google Scholar 

  36. He T, Smith G, Carpenter J-P, Mohiaddin R, Pennell D, Firmin D (2009) A phantom study of temperature-dependent MRI T2* measurement. In: Proceedings of the 12th annual meeting of the society for cardiovascular magnetic resonance, Orlando, p 147

  37. Kim J, Seethamraju RT, Suh J-Y, Cho G, Shim W, Kim Y (2011) R1 and R2* changes according to Gd concentration: a potential limiting factor in converting MR signal intensity to Gd concentration. In: Proceedings of the 19th scientific meeting of the international society for magnetic resonance in medicine, Montreal, p 3641

  38. Schenck J (1996) The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys 23:815–850

    Article  CAS  PubMed  Google Scholar 

  39. Pintaske J, Helms G, Bantleon R, Kehlbach R, Wiskirchen J, Claussen CD, Schick F (2005) A preparation technique for quantitative investigation of SPIO-containing solutions and SPIO-labelled cells by MRI. Biomed Tech (Berl) 50:174–180 (in German)

    Article  CAS  Google Scholar 

  40. Yoshimura K, Kato H, Kuroda M et al (2003) Development of a tissue equivalent MRI phantom using carrageenan gel. Magn Reson Med 50:1011–1017

    Article  PubMed  Google Scholar 

  41. Caram-Lelham N, Cleland RL, Sundelof LO (1994) Temperature and salt optimization of kappa-carrageenan fractionation by DEAE-cellulose. Int J Biol Macromol 16:71–75

    Article  CAS  PubMed  Google Scholar 

  42. Walker PM, Lerski RA, Mathur-De V, Binet J, Yane F (1988) VI.Preparation of agarose gels as reference substances for NMR relaxation time measurement. Magn Reson Imaging 6:215–222

    Article  CAS  PubMed  Google Scholar 

  43. Barnhart JL, Kuhnert N, Bakan DA, Berk RN (1987) Biodistribution of GdCl3 and Gd-DTPA and their influence on proton magnetic-relaxation in rat-tissues. Magn Reson Imaging 5:221–231

    Article  CAS  PubMed  Google Scholar 

  44. de Certaines JD, Henriksen O, Spisni A, Cortsen M, Ring PB (1993) In vivo measurements of proton relaxation times in human brain, liver, and skeletal muscle: a multicenter MRI study. Magn Reson Imaging 11:841–850

    Article  PubMed  Google Scholar 

  45. Allen PD, St Pierre TG, Chua-anusorn W, Strom V, Rao KV (2000) Low-frequency low-field magnetic susceptibility of ferritin and hemosiderin. Biochim Biophys Acta 1500:186–196

    Article  CAS  PubMed  Google Scholar 

  46. Lawaczeck R, Bauer H, Frenzel T et al (1997) Magnetic iron oxide particles coated with carboxydextran for parenteral administration and liver contrasting. Pre-clinical profile of SH U555A. Acta Radiol 38:584–597

    CAS  PubMed  Google Scholar 

  47. Kaul MG, Bigall N, Bruns OT, Ittrich H, Nikolic MS, RParak WJ, Dahnke H, Weller H, Adam G (2006) Relaxometry of new nanoparticles at 3 T: effect of core size and coating on r1, r2, r2*. In: Proceedings of the 17th scientific meeting, international society of magnetic resonance in medicine, Seattle, p 1819

  48. Wilson M, Reynolds G, Kauppinen RA, Arvanitis TN, Peet AC (2011) A constrained least-squares approach to the automated quantitation of in vivo (1)H magnetic resonance spectroscopy data. Magn Reson Med 65:1–12

    Article  CAS  PubMed  Google Scholar 

  49. Wood JC, Tyszka JM, Carson S, Nelson MD, Coates TD (2004) Myocardial iron loading in transfusion-dependent thalassemia and sickle cell disease. Blood 103:1934–1936

    Article  CAS  PubMed  Google Scholar 

  50. Motulsky HJ, Christopoulos A (2004) Fitting models to biological data using linear and nonlinear regression. A practical guide to curve fitting. GraphPad Software, San Diego, p 351

    Google Scholar 

  51. van de Velde F, Rollema H (2006) High Resolution NMR of Carrageenans. In: Webb G (ed) Modern magnetic resonance. Springer, The Netherlands, pp 1605–1610

    Google Scholar 

  52. He T, Gatehouse PD, Kirk P, Tanner MA, Smith GC, Keegan J, Mohiaddin RH, Pennell DJ, Firmin DN (2007) Black-blood T2* technique for myocardial iron measurement in thalassemia. J Magn Reson Imaging 25:1205–1209

    Article  PubMed  Google Scholar 

  53. Kennan RP, Zhong J, Gore JC (1994) Intravascular susceptibility contrast mechanisms in tissues. Magn Reson Med Sci 31:9–21

    Article  CAS  Google Scholar 

  54. Ghugre NR, Coates TD, Nelson MD, Wood JC (2005) Mechanisms of tissue-iron relaxivity: nuclear magnetic resonance studies of human liver biopsy specimens. Magn Reson Med 54:1185–1193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ghugre NR, Wood JC (2011) Relaxivity-iron calibration in hepatic iron overload: probing underlying biophysical mechanisms using a Monte Carlo model. Magn Reson Med 65:837–847

    Article  PubMed  Google Scholar 

  56. Bullivant JP, Zhao S, Willenberg BJ, Kozissnik B, Batich CD, Dobson J (2013) Materials characterization of Feraheme/ferumoxytol and preliminary evaluation of its potential for magnetic fluid hyperthermia. Int J Mol Sci 14:17501–17510

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank the following colleagues for their valuable assistance. Dr. Yasvir Tesiram Ph.D. and Dr. Viktor Vegh Ph.D. for their critical review of the text, Dr. Rajiv Bhalla Ph.D. for laboratory support and skills training, Dr. Katie McMahon Ph.D. for statistical advice, and Dr. Taracad K. Venkatachalam Ph.D. DSc. for insights into gel chemistry and material control. The work is supported by a University of Queensland Research Scholarship, and employed equipment of the Australian National Imaging Facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory C. Brown.

Ethics declarations

Conflict of interest

All the authors have no financial interest to declare in the context of this work.

Ethical standards

This manuscript does not contain patient data or make use of human or animal imaging. The work has been conducted according to The University of Queensland's standards of research and academic integrity.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 43 kb)

Supplementary material 2 (DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, G.C., Cowin, G.J. & Galloway, G.J. A USPIO doped gel phantom for R2* relaxometry. Magn Reson Mater Phy 30, 15–27 (2017). https://doi.org/10.1007/s10334-016-0576-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-016-0576-x

Keywords

Navigation