Skip to main content
Log in

Physical and organizational provision for installation, regulatory requirements and implementation of a simultaneous hybrid PET/MR-imaging system in an integrated research and clinical setting

  • Review Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

The implementation of hybrid imaging systems requires thorough and anticipatory planning at local and regional levels. For installation of combined positron emission and magnetic resonance imaging systems (PET/MRI), a number of physical and constructional provisions concerning shielding of electromagnetic fields (RF- and high-field) as well as handling of radionuclides have to be met, the latter of which includes shielding for the emitted 511 keV gamma rays. Based on our experiences with a SIEMENS Biograph mMR system, a step-by-step approach is required to allow a trouble-free installation. In this article, we present a proposal for a standardized step-by-step plan to accomplish the installation of a combined PET/MRI system. Moreover, guidelines for the smooth operation of combined PET/MRI in an integrated research and clinical setting will be proposed. Overall, the most important preconditions for the successful implementation of PET/MRI in an integrated research and clinical setting is the interdisciplinary target-oriented cooperation between nuclear medicine, radiology, and all referring and collaborating institutions at all levels of interaction (personnel, imaging protocols, reporting, selection of the data transfer and communication methods).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. European Parliament and Council (1996) Directive 96/29/EURATOM Laying down basic safety standards for the protection of health of workers and the general public against the dangers arising from ionizing radiation. Off J Eur Un L 159:1

  2. European Parliament and Council (1997) Directive 97/43/EURATOM On health protection of individuals against dangers of ionizing radiation in relation to medical exposure. Off J Eur Un L 180:22

    Google Scholar 

  3. Strahlenschutzverordnung vom 20. Juli 2001 (BGBl. I S. 1714; 2002 I S. 1459), die zuletzt durch Artikel 5 Absatz 7 des Gesetzes vom 24. Februar 2012 (BGBl. I S. 212) geändert worden ist

  4. European Commission Public Health (2009) Manufacture of Radiopharmaceuticals, The Rules Governing Medicinal Products in the European Union, EU Guidelines to Good Manufacturing Practice, Medicinal Products for Human and Veterinary Use. EudraLex, vol 4, Annex 3

  5. European Commission Public Health (2010) Investigational Medicinal Products, The Rules Governing Medicinal Products in the European Union; EU Guidelines to Good Manufacturing Practice, Medicinal Products for Human and Veterinary Use. EudraLex, vol 4, Annex 13

  6. Arzneimittelgesetz in der Fassung der Bekanntmachung v. 12. Dezember 2005 (BGBl I S. 3394), das zuletzt durch Artikel 13 des Gesetzes vom 22. Dezember 2011 (BGBl I S. 2983) geändert worden ist

  7. European Parliament and Council (1993) Directive 93/42/EEC Concerning medical devices. Off J Eur Un L 169:1

    Google Scholar 

  8. European Parliament and Council (2004) Directive 2004/40/EC On the minimum health and safety requirements regarding the exposure of workers to the risks arising from physical agents (electromagnetic fields) Off Journ Eur Un L 159:1

  9. Medizinproduktegesetz in der Fassung der Bekanntmachung vom 7. August 2002 (BGBl. I S. 3146), das zuletzt durch Artikel 13 des Gesetzes vom 8. November 2011 (BGBl. I S. 2178) geändert worden ist

  10. National Electrical Manufacturers Association (1996) DICOM Supplement 12, Addendum to part 3, positron emission tomography image objects. http://dicom.nema.org/

  11. National Electrical Manufacturers Association (2011) DICOM information object definitions. Part 3, http://dicom.nema.org/

  12. National Electrical Manufacturers Association (2011) DICOM media storage and file format for media interchange. Part 10, http://dicom.nema.org/

  13. National Electrical Manufacturers Association (2011). DICOM service class specifications. Part 4, http://dicom.nema.org/

  14. Wikimedia Foundation (2012) Free software open source wiki package written in PHP. http://www.mediawiki.org/

  15. Busemann-Sokole E, Plachcinska A, Britten A, EANM Physics Committee (2010) Acceptance testing for nuclear medicine instrumentation. Eur J Nucl Med Mol Imaging 37(3):672–681

    Article  PubMed  Google Scholar 

  16. National Electrical Manufacturers Association (2007) Performance measurements of positron emission tomographs. NEMA Standards Publication NU 2-2007, Rosslyn, VA

  17. Busemann-Sokole E, Plachcinska A, Britten A, EANM Physics Committee (2010) Routine quality control recommendations for nuclear medicine instrumentation. Eur J Nucl Med Mol Imaging 37(3):662–671

    Article  PubMed  Google Scholar 

  18. Drzezga A, Souvatzoglou M, Eiber M, Beer A, Fürst S, Martinez-Möller A, Nekolla SG, Ziegler SI, Ganter C, Rummeny E, Schwaiger M (2012) First clinical experience with integrated whole-body PET/MR: comparison to PET/CT in patients with oncologic diagnoses. J Nucl Med 53:1–11

    Article  Google Scholar 

  19. Schwenzer NF, Schmidt H, Claussen CD, Whole-body MR/PET (2012) Applications in abdominal imaging. Abdom Imaging 37(1):20–28

    Article  PubMed  CAS  Google Scholar 

  20. Ratib O, Beyer T (2011) Whole-body hybrid PET/MRI: ready for clinical use? Eur J Nucl Med Mol Imaging 38:992–995

    Article  PubMed  Google Scholar 

  21. Schwenzer NF, Stegger L, Bisdas S, Schraml C, Kolb A, Boss A, Müller M, Reimold M, Ernemann U, Claussen CD, Pfannenberg C, Schmidt H (2012) Simultaneous PET/MR imaging in a human brain PET/MR system in 50 patients-current state of image quality. Eur J Radiol. doi:10.1016/j.ejrad.2011.12.027

  22. Gutberlet M, Noeske R, Schwinge K, Freyhardt P, Felix R, Niendorf T (2006) Comprehensive cardiac magnetic resonance imaging at 3.0 Tesla: feasibility and implications for clinical applications. Invest Radiol 41(2):154–167

    Article  PubMed  Google Scholar 

  23. Gutberlet M, Schwinge K, Freyhardt P, Spors B, Grothoff M, Denecke T, Lüdemann L, Noeske R, Niendorf T, Felix R (2005) Influence of high magnetic field strengths and parallel acquisition strategies on image quality in cardiac 2D CINE magnetic resonance imaging: comparison of 1.5 T vs. 3.0 T. Eur Radiol 15(8):1586–1597

    Article  PubMed  Google Scholar 

  24. Kellman P, Larson AC, Hsu LY, Chung YC, Simonetti OP, McVeigh ER, Arai AE (2005) Motion-corrected free-breathing delayed enhancement imaging of myocardial infarction. Magn Reson Med 53(1):194–200

    Article  PubMed  Google Scholar 

  25. Eiber M, Martinez-Möller A, Souvatzoglou M, Holzapfel K, Pickhard A, Löffelbein D, Santi I, Rummeny EJ, Ziegler S, Schwaiger M, Nekolla SG, Beer AJ (2011) Value of a Dixon-based MR/PET attenuation correction sequence for the localization and evaluation of PET-positive lesions. Eur J Nucl Med Mol Imaging 38(9):1691–1701

    Article  PubMed  Google Scholar 

  26. Delso G, Furst S, Jakoby B, Ladebeck R, Ganter C, Nekolla SG, Schwaiger M, Ziegler SI (2012) Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J Nucl Med 52:1–9

    Google Scholar 

  27. Keller SH, Holm S, Hansen AE, Sattler B, Andersen A, Klausen TL, Højgaard L, A Kjær A, Beyer T (2012) Image artifacts from MR-based attenuation correction in clinical, whole-body PET/MRI. Magn Reson Mater Phy. doi:10.1007/s10334-012-0345-4

  28. Hofmann M, Steinke F, Scheel V, Charpiat G, Farquhar J, Aschoff P, Brady M, Schölkopf B, Pichler BJ (2008) MRI-based attenuation correction for PET/MRI: a novel approach combining pattern recognition and atlas registration. J Nucl Med 49:1875–1883

    Article  PubMed  Google Scholar 

  29. Hofmann M, Pichler BJ, Schölkopf B, Beyer T (2009) Towards quantitative PET/MRI a review of MR-based attenuation correction techniques. Eur J Nucl Med Mol Imaging 36(Suppl 1):S93–S104

    Article  PubMed  Google Scholar 

  30. Hofmann M, Bezrukov I, Mantlik F, Aschoff P, Steinke F, Beyer T, Pichler BJ, Schölkopf B (2011) MRI-based attenuation correction for whole-body PET/MRI: quantitative evaluation of segmentation- and atlas-based methods. J Nucl Med 52:1392–1399

    Article  PubMed  Google Scholar 

  31. Martinez-Möller A, Souvatzoglou M, Delso G, Bundschuh RA, Chefd’hotel C, Ziegler SI, Navab N, Schwaiger M, Nekolla SG (2009) Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. J Nucl Med 50:520–526

    Article  PubMed  Google Scholar 

  32. Schulz V, Torres-Espallardo I, Renisch S, Hu Z, Ojha N, Börnert P, Perkuhn M, Niendorf T, Schäfer WM, Brockmann H, Krohn T, Buhl A, Günther RW, Mottaghy FM, Krombach GA (2011) Automatic, three-segment, MR-based attenuation correction for whole-body PET/MR data. Eur J Nucl Med Mol Imaging 38(1):138–152

    Article  PubMed  CAS  Google Scholar 

  33. Berker Y, Franke J, Salomon A, Palmowski M, Donker HC, Temur Y, Mottaghy FM, Kuhl C, Izquierdo-Garcia D, Fayad ZA, Kiessling F, Schulz V (2012) MRI-based attenuation correction for hybrid PET/MRI systems: a 4-class tissue segmentation technique using a combined ultrashort-echo-time/Dixon MRI sequence. J Nucl Med 53(5):796–804

    Article  PubMed  Google Scholar 

  34. Zanotti-Fregonara P, Maroy R, Comtat C, Jan S, Gaura V, Bar-Hen A, Ribeiro MJ, Trébossen R (2009) Comparison of 3 methods of automated internal carotid segmentation in human brain PET studies: application to the estimation of arterial input function. J Nucl Med 50(3):461–467

    Article  PubMed  Google Scholar 

  35. Rousset OG, Yilong M, Evans AC (1998) Correction for partial volume effects in PET: principle and validation. J Nucl Med 39:904–911

    PubMed  CAS  Google Scholar 

  36. Feng D, Huang S-C, Wang X (1993) Models for computer simulation studies of input functions for tracer kinetic modeling with positron emission tomography. Int J Biomed Comput 32:95–110

    Article  PubMed  CAS  Google Scholar 

  37. Koschewski F (2011) PET-MRT am Universitätsklinikum Leipzig. Telekine TV Productions, www.youtube.com/watch?v=cq9sYYqtU5w

  38. Friedman L, Glover GH (2006) Report on a multicenter fMRI quality assurance protocol. J Magn Reson Imaging 23:827–839

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the German Research Society (DFG, Deutsche Forschungsgesellschaft) for funding the PET/MRI system (grant-code: SA 669/9-1). The Max Planck Society is acknowledged for co-funding the system. Moreover, the contribution of Ellinor Busemann Sokole, Amsterdam, to the acceptance testing and quality control part is greatly appreciated. Regine Kluge, Marianne Patt and Peter Werner, University Hospital Leipzig, Department of Nuclear Medicine as well as Wolfgang Hirsch, University Hospital Leipzig, Department of Pediatric Radiology are acknowledged for their help in the fine adjustment of the text passages with respect to their areas of expertise. Finally, the authors thank Wendy Waddington, Institute of Nuclear Medicine, UCL Hospitals London, for the review of the document as a native speaker.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Sattler.

Additional information

Bernhard Sattler and Thies Jochimsen contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sattler, B., Jochimsen, T., Barthel, H. et al. Physical and organizational provision for installation, regulatory requirements and implementation of a simultaneous hybrid PET/MR-imaging system in an integrated research and clinical setting. Magn Reson Mater Phy 26, 159–171 (2013). https://doi.org/10.1007/s10334-012-0347-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-012-0347-2

Keywords

Navigation