Skip to main content
Log in

Microcoil-based MRI: feasibility study and cell culture applications using a conventional animal system

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Object

The aim of this study was to demonstrate the feasibility of MR microimaging on a conventional 9.4 T horizontal animal MRI system using commercial available microcoils in combination with only minor modifications to the system, thereby opening this field to a larger community.

Materials and methods

Commercially available RF microcoils designed for high-resolution NMR spectrometers were used in combination with a custom-made probehead. For this purpose, changes within the transmit chain and modifications to the adjustment routines and image acquisition sequences were made, all without requiring expensive hardware. To investigate the extent to which routine operation and high-resolution imaging is possible, the quality of phantom images was analysed. Surface and solenoidal microcoils were characterized with regard to their sensitive volume and signal-to-noise ratio. In addition, the feasibility of using planar microcoils to achieve high-resolution images of living glioma cells labelled with MnCl2 was investigated.

Results

The setup presented in this work allows routine acquisition of high-quality images with high SNR and isotropic resolutions up to 10 μm within an acceptable measurement time.

Conclusion

This study demonstrates that MR microscopy can be applied at low cost on animal MR imaging systems, which are in widespread use. The successful imaging of living glioma cells indicates that the technique promises to be a useful tool in biomedical research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

SNR:

Signal-to-noise ratio

SNR/mm3 :

Signal-to-noise ratio per unit volume

SGU:

Signal generation unit

FA:

Flip angle

SE:

Spin echo

GE:

Gradient echo

MGE:

Multi gradient echo

References

  1. Eccles CD, Callaghan PT (1986) High resolution imaging: the NMR microscope. J Magn Reson 68: 393–398

    CAS  Google Scholar 

  2. Aguayo JB, Blackband SJ, Schoeniger J, Mattingly MA, Hintermann M (1986) Nuclear magnetic resonance imaging of a single cell. Nature 322: 190–191

    Article  PubMed  CAS  Google Scholar 

  3. Ciobanu L, Pennington CH (2004) 3D micron-scale MRI of single biological cells. Solid State Nucl Magn Reson 25: 138–141

    Article  PubMed  CAS  Google Scholar 

  4. Lee SC, Kim K, Kim J, Lee S, Yi JH, Kim SW, Ha KS, Cheong C (2001) One micrometer resolution NMR microscopy. J Magn Reson 150: 207–213

    Article  PubMed  CAS  Google Scholar 

  5. Grant SC, Buckley DL, Gibbs S, Webb AG, Blackband SJ (2001) MR microscopy of multicomponent diffusion in single neurons. Magn Reson Med 46: 1107–1112

    Article  PubMed  CAS  Google Scholar 

  6. Meadowcroft MD, Connor JR, Smith MB, Yang QX (2009) MRI and histological analysis of beta-amyloid plaques in both human Alzheimer’s disease and APP/PS1 transgenic mice. J Magn Reson Imaging 29: 997–1007

    Article  PubMed  Google Scholar 

  7. Flint JJ, Lee CH, Hansen B, Fey M, Schmidig D, Bui JD, King MA, Vestergaard-Poulsen P, Blackband SJ (2009) Magnetic resonance microscopy of mammalian neurons. Neuroimage 46: 1037– 1040

    Article  PubMed  Google Scholar 

  8. Blackwell ML, Farrar CT, Fischl B, Rosen BR (2009) Target-specific contrast agents for magnetic resonance microscopy. Neuroimage 46: 382–393

    Article  PubMed  Google Scholar 

  9. Hoult DI, Richards RE (1976) The signal-to-noise ratio of the nuclear magnetic resonance experiment. J Magn Reson 24: 71–85

    Google Scholar 

  10. Hoult DI, Lauterbur PC (1979) The sensitivity of the zeugmatographic experiment involving human samples. J Magn Reson 34: 425–433

    CAS  Google Scholar 

  11. Ciobanu L, Seeber DA, Pennington CH (2002) 3D MR microscopy with resolution 3.7 μm by 3.3 μm by 3.3 μm. J Magn Reson 158: 178–182

    Article  PubMed  CAS  Google Scholar 

  12. Eroglu S, Gimi B, Friedman BRG, Magin RL (2003) NMR spiral surface microcoils: design, fabrication and imaging. Concept Magn Reson B 17: 1–10

    Article  Google Scholar 

  13. Dechow J, Lanz T, Stumber M, Forchel A, Haase A (2003) Preamplified planar microcoils on GaAs substrates for microspectroscopy. Rev Sci Instrum 74(11): 4855–4857

    Article  CAS  Google Scholar 

  14. Baxan N, Rabeson H, Pasquet G, Châteaux J-F, Briguet A, Morin P, Graveron-Demilly D, Fakri-Bouchet L (2008) Limit of detection of cerebral metabolites by localized NMR spectroscopy using microcoils. CR Chim 11: 448–456

    Article  CAS  Google Scholar 

  15. Weiger M, Schmidig D, Denoth S, Massin C, Vincent F, Schenkel M, Fey M (2008) NMR microscopy with isotropic resolution of 3.0 μm using dedicated hardware and optimized methods. Concept Magn Reson B 33: 84–93

    Article  Google Scholar 

  16. Anders J, Chiaramonte G, Sangiorgio P, Boero G (2009) A single-chip array of NMR receivers. J Magn Reson 201(2): 239–249

    Article  PubMed  CAS  Google Scholar 

  17. Nema (2001) Determination of Signal-to-Noise Ratio (SNR) in Diagnostic Magnetic Resonance Imaging. NEMA Standards Publication MS 1-2001

  18. Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M, Kornblum HI (2003) Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA 100: 15178–15183

    Article  PubMed  CAS  Google Scholar 

  19. Maclaren JR, Bones PJ, Millane RP, Watts R (2008) MRI with TRELLIS: a novel approach to motion correction. Magn Reson Imaging 26: 474–483

    Article  PubMed  Google Scholar 

  20. Olson DL, Peck TL, Webb AG, Magin RL, Sweedler JV (1995) High-resolution microcoil 1H-NMR for mass-limited, nanoliter-volume samples. Science 270: 1967–1970

    Article  CAS  Google Scholar 

  21. Mispelter J, Lupu M, Briguet A (2006) NMR probeheads for biophysical and biomedical experiments. Imperial College Press, London

    Google Scholar 

  22. Gimi B (2006) Magnetic resonance microscopy: concepts, challenges, and state-of-the-art. Methods Mol Med 124: 59–84

    PubMed  Google Scholar 

  23. Badilita V, Kratt K, Baxan N, Mohmmadzadeh M, Burger T, Weber H, Elverfeldt DV, Hennig J, Korvink JG, Wallrabe U (2010) On-chip three dimensional microcoils for MRI at the microscale. Lab Chip 10: 1387–1390

    Article  PubMed  CAS  Google Scholar 

  24. Lin YJ, Koretsky AP (1997) Manganese ion enhances T1-weighted MRI during brain activation: an approach to direct imaging of brain function. Magn Reson Med 38: 378–388

    Article  PubMed  CAS  Google Scholar 

  25. Callaghan PT (2006) Principles of nuclear magnetic resonance microscopy. Oxford Science Publications, Oxford

    Google Scholar 

  26. Neuberger T, Webb A (2008) Radiofrequency coils for magnetic resonance microscopy. NMR Biomed 22: 975–981

    Article  Google Scholar 

  27. Webb AG (2004) Optimizing the point spread function in phase-encoded magnetic resonance microscopy. Concept Magn Reson A 22: 25–36

    Article  Google Scholar 

  28. Einstein A (1905) Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann Phys-Berlin 17: 549–560

    Article  CAS  Google Scholar 

  29. Aoki I, Takahashi Y, Chuang K-H, Silva AC, Igarashi T, Tanaka C, Childs RW, Koretsky AP (2006) Cell labeling for magnetic resonance imaging with the T1 agent manganese chloride. NMR Biomed 19: 50–59

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Weber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, H., Baxan, N., Paul, D. et al. Microcoil-based MRI: feasibility study and cell culture applications using a conventional animal system. Magn Reson Mater Phy 24, 137–145 (2011). https://doi.org/10.1007/s10334-011-0244-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-011-0244-0

Keywords

Navigation