Skip to main content

Design Considerations of Small-Animal CT Systems

  • Chapter
  • First Online:
Molecular Imaging of Small Animals
  • 1327 Accesses

Abstract

This chapter focuses on the ability of small-animal CT to provide information about molecular species and their spatial distribution in tissues. Over the past several decades radionuclide imaging methods have been the mainstay of in vivo molecular imaging by virtue of the variety of biologically active molecules that can be labeled with a radioactive marker. CT image data has been used to provide both attenuation correction of the SPECT and PET images as well as provide the anatomic localization of the radionuclide accumulation. This important contribution of CT to molecular imaging is presented in those chapters directly addressing the radionuclide imaging approaches. Although, the presence of higher atomic weight atomic labels (e.g., iodine) of biologically active tracer molecules can be conveyed by conventional X-ray attenuation-based imaging methods (in milli-molar concentrations as compared to pico-molar concentrations by radionuclide methods), molecular species can be conveyed by non-attenuating aspects of X-ray interaction with matter by virtue of their molecular bonds that are characteristic of polymeric molecules. These non-attenuating X-ray imaging methods are now starting to emerge from the feasibility demonstrations and hence will be explored in some depth in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Elliot JC, Dover SD (1982) X-ray tomography. J Microsc 162(2): 211–213.

    Article  Google Scholar 

  2. Flannery BP, Deckman HW, Roberg WG et al (1987) Three dimensional x-ray microtomography. Science 237: 1439–1444.

    Article  CAS  PubMed  Google Scholar 

  3. Sasov A (1987) Non-destructive 3D imaging of the objects internal microstructure by microCT attachment for SEM. J Microsc 147: 169–192.

    Article  Google Scholar 

  4. Feldkamp LA, Davis LC, Kress JW (1984) Practical cone-beam algorithm. J Opt Soc Am A1: 162–191.

    Google Scholar 

  5. Ritman EL (2014) Cone beam micro-CT for small-animal research. IN: Shaw C (ed): Cone Beam Computed Tomography. Chapter 12, pp171–179. CRC Press (Taylor and Francis).

    Google Scholar 

  6. Paulus MJ, Geason SS, Kennel SJ et al (2000) High resolution x-ray tomography: an emerging tool for small animal cancer research. Neoplasia 2: 36–45.

    Article  Google Scholar 

  7. Holdsworth DW, Thornton MM (2002) Micro-CT in small animal and specimen imaging. Trends Biotech 20(8): S34–39.

    Article  Google Scholar 

  8. Ritman EL (2004) Micro-computed tomography: Current status and developments. Annual Rev Biomed Eng 6: 185–208.

    Article  CAS  Google Scholar 

  9. Badea CT, Drangova M, Holdsworth DW et al (2008) In vivo small-animal imaging using micro-CT and digital subtraction angiography. Physics in Med Biol 53: R319–R350.

    Article  CAS  Google Scholar 

  10. Brooks RA, Di Chiro G (1976) Statistical limitations in x-ray reconstructive tomography. Med Phys 3: 237–240.

    Article  CAS  PubMed  Google Scholar 

  11. Ford NL, Thornton MM, Holdsworth DW (2003) Fundamental image quality limits for microcomputed tomography in small animals. Med Phys 30: 2869–2898.

    Article  CAS  PubMed  Google Scholar 

  12. Faulkner K, Moores BM (1984) Noise and contrast detection in computed tomography images. Phys Med Biol 29: 329–339.

    Article  CAS  PubMed  Google Scholar 

  13. Grodzins L (1983) Optimum energies for x-ray transmission tomography of small samples. Nucl Instrum Methods 206: 541–545.

    Article  CAS  Google Scholar 

  14. Drangova M, Ford NL, Detombe SA et al (2007) Fast retrospectively gated quantitative four-dimensional (4D) cardiac microcomputed tomography imaging of free-breathing mice. Invest Radiol 42: 85–94.

    Article  PubMed  Google Scholar 

  15. Badea CT, Hedlund LW, Johnson GA et al (2004) Micro-CT with respiratory and cardiac gating. Med Phys 31: 3324–3329.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Cowan CM, Aghaloo T, Chou YF et al (2007) Micro-CT evaluation of three dimensional mineralization in response to BMP-2 doses in vitro and in critical sized rat calvarial defects. Tissue Eng 13: 501–512.

    Article  CAS  PubMed  Google Scholar 

  17. Borah B, Ritman EL, Dufresne TE et al (2005) The effect of residronate on bone mineralization as measured by micro-computed tomography with synchrotron radiation: Correlation to histomorphometric indices of turnover. Bone 37(1): 1–9.

    Article  CAS  PubMed  Google Scholar 

  18. Kinney JH, Lane NE, Haupt DL (1995) In vivo three dimensional microscopy of trabecular bone. J Bone Miner Res 10(2): 264–270.

    Article  CAS  PubMed  Google Scholar 

  19. Lee J, Beighley P, Ritman E et al (2007) Automatic segmentation of 3D micro-CT coronary vascular images. Med Image Analysis 11(6): 630–647.

    Article  Google Scholar 

  20. Op den Buijs J, Bajzer Z, Ritman EL (2006) Branching morphology of the rat hepatic portal vein tree: A micro-CT study. Ann Biomed Eng 34(9): 1420–1428.

    Article  PubMed  Google Scholar 

  21. Nordsletten D, Blackett S, Bentley MD et al (2006) Structural morphology of renal vasculature. Am J Physiol: Heart Circ Physiol 291: H296–H309.

    CAS  Google Scholar 

  22. Badea CT, Hedlund LW, Mackel JF et al (2007b) Cardiac micro-computed tomography for morphological and functional phenotyping of muscle LIM protein null mice. Mol Imaging 6: 261–268.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Kantor B, Jorgensen SM, Lund PE et al (2002) Cryostatic micro-computed tomography imaging of arterial wall perfusion. Scanning 24: 186–190.

    Google Scholar 

  24. Schmermund A, Bell MR, Lerman LO et al (1997) Quantitative evaluation of regional myocardial perfusion using fast x-ray computed tomography. Herz 22(1): 29–39.

    Article  CAS  PubMed  Google Scholar 

  25. Crone C (1963) The permeability of capillaries in various organs as determined by the use of the indicator diffusion method. Acta Physiol Scand 58: 292–305.

    Article  CAS  PubMed  Google Scholar 

  26. Cann CE, Gamsu G, Birnbert FA et al (1982) Quantification of calcium in solitary pulmonary nodules using single and dual-energy CT. Radiology 145: 493–496.

    CAS  PubMed  Google Scholar 

  27. Herman GT (1980) Image Reconstruction from Projections: The Fundamentals of Computerized Tomography. Academic Press, New York.

    Google Scholar 

  28. Dilmanian FA (1992) Computed tomography with monochromatic x-rays. Am J Physiol Imaging 7(3-4): 175–179.

    Google Scholar 

  29. Bonse U, Johnson Q, Nicols M et al (1986) High resolution tomography with chemical specificity. Nucl Instrum Methods Phys Res A 246(1-3): 644–648.

    Google Scholar 

  30. Ross PA (1928) A new method of spectroscopy for faint x-radiations. J Opt Soc Am 16: 433–437.

    Article  CAS  Google Scholar 

  31. Spanne P (1989) X-ray energy optimization in the computed tomography. Phys Med Biol 34(6): 679–690.

    Article  CAS  PubMed  Google Scholar 

  32. http://physics.nist.gov/PhysRefData/XrayMassCoef/

  33. Le Duc et al (1999) ESRF HighLights. http://www.esrf.eu/UsersAndScience?Publications/Highlights/1999/life-sci/broncho.html

  34. Butzer JS, Butler APH, Butler PH et al (2008) Image and Vision Comput New Zealand, pgs. 1-6, doi:10.1109/IVNZ.2008.4762080.

  35. Anderson NG, Butler AP, Scott N et al (2009) Medipix imaging – evaluation of data sets with PCA. Eur Radiol B-393: S228.

    Google Scholar 

  36. Panetta D, Belcari N, Baldazzi G et al (2007) Characterization of a high-resolution CT scanner prototype for small animals. Nuovo Cimento B 122: 739–747.

    Google Scholar 

  37. Firsching M, Butler AP, Scott N et al (2009) Contrast agent recognition in small animal CT using the Medipix2 detector. Nucl Inst Meth A 607: 179–182.

    Article  CAS  Google Scholar 

  38. Gleason SS, Sari-Sarraf H, Paulus MJ et al (1999) Reconstruction of multi-energy x-ray computed tomography images of laboratory mice. IEEE Trans Nucl Sci 46: 1081–1086.

    Article  Google Scholar 

  39. Takeda T, Yuasa T, Hoshino A et al (1997) Fluorescent x-ray computed tomography to visualize specific material distribution. IN: Developments in X-ray Tomography. Proc SPIE 3149: 160–172.

    Google Scholar 

  40. Takeda T, Tu Q, Yashiro T et al (1999) Human thyroid specimen imaging by fluorescent x-ray computed tomography with synchrotron radiation. Proc SPIE 3772: 258–267.

    Article  Google Scholar 

  41. Cui CW, Jorgensen SM, Eaker DR et al (2008) Coherent x-ray scattering for discriminating biocompatible materials in tissue scaffolds. Proc SPIE: Development X-ray Tomogr VI 7078: 70781S-1-70781S-10.

    Google Scholar 

  42. Johns PC, Leclair RJ, Wismayer MP (2002) Medical x-ray imaging with scattered photons. IN: Opto-Canada: SPIE Regional Meeting on Optoelectronics, Photonics, and Imaging, Proc SPIE TDO1:355–357.

    Google Scholar 

  43. Grant JA, Morgan MJ, Davis JR et al (1993) X-ray diffraction microtomography. Meas Sci Technol 4: 83–87.

    Article  Google Scholar 

  44. Pelc JS (2001) Volume rendering of tendon-bone relationships using unenhanced CT. Am J Roentgenol 176: 973–977.

    Article  CAS  Google Scholar 

  45. Kosanetzky J, Knoerr B, Harding G et al (1987) X-ray diffraction measurements of some plastic materials and body tissues. Med Phys 14(4): 526–532.

    Article  CAS  PubMed  Google Scholar 

  46. Lewis RA, Hall CJ, Hufton AP et al (2003) X-ray refraction effects: application to the imaging of biological tissues. British J Radiol 76: 301–308.

    Article  CAS  Google Scholar 

  47. Momose A, Fukuda J (1995) Phase-contrast radiographs of nonstained rat cerebellar specimen. Med Phys 22: 375–379.

    Article  CAS  PubMed  Google Scholar 

  48. Cloetens P, Ludwig W, van Dyck D, et al (1999) Quantitative phase tomography by holographic reconstruction. Proc SPIE 3772: 279–290.

    Article  Google Scholar 

  49. Beckman F, Bonse U, Busck F et al (1997) X-ray microtomography (μCT) using phase contrast for the investigation of organic matter. J Comput Assist Tomogr 21: 539–553.

    Article  Google Scholar 

  50. Chapman D, Thomlinson W, Johnston RE et al (1997) Diffraction enhanced x-ray imaging. Phys Med Biol 42: 20115–20125.

    Article  Google Scholar 

  51. Momose A, Yashiro W, Takeda Y et al (2008) Sensitivity of x-ray phase tomography based on Talbot and Talbot-Lau interferometer. Proc SPIE 7078: 707811-1-707811-8.

    Google Scholar 

  52. Nugent KA, Gureyev TE, Cookson DJ et al (1996) Quantitative phase imaging using hard x-rays. Phys Rev Letters 77: 2961–2964.

    Article  CAS  Google Scholar 

  53. Pfeiffer F, Weitkamp T, Bunk O et al (2006) Phase retrieval and differential phase-contrast imaging with low brilliance x-ray sources. Nature Physics 2: 256–261.

    Google Scholar 

  54. Wilkins SW, Gureyev TE, Gao D et al (1996) Phase-contrast imaging using polychromatic hard x-rays. Nature 384: 335–338.

    Article  CAS  Google Scholar 

  55. Donnelly EF, Price RR, Lewis KG et al (2007) Polychromatic phase-contrast computed tomography. Med Phys 34: 3165.

    Article  PubMed  Google Scholar 

  56. Olivo A, Speller R (2007) Polychromatic phase contrast imaging as a basic step towards a widespread application of the technique. Nucl Instrum Methods A580: 0179–1082.

    Google Scholar 

  57. Olivo A, Speller R (2007) A coded-aperture technique allowing x-ray phase contrast imaging with laboratory sources. Appl Phys Lett 91: 074106.

    Article  Google Scholar 

  58. Zhou SA, Brahme A (2008) Development of phase-contrast x-ray imaging techniques and potential medical applications. Physica Medica 24: 129–148.

    Article  PubMed  Google Scholar 

  59. Takeda T, Wu J, Yoneyama A et al (2004) SR biomedical imaging with phase-contrast and fluorescent x-ray CT. Proc SPIE 5535: 380–391.

    Article  Google Scholar 

  60. Dilmanian FA, Garrett RF, Thomlinson WC et al (1990) Multiple energy computed tomography for neuroradiology with monochromatic-rays from the National Synchrotron Light Source. Physica Medica VI, n.3-4: 301–307.

    Google Scholar 

  61. Bond VP, Robertson JS, (1957) Vertebrate radiobiology (lethal actions and associated effects). Annu Rev Nucl Sci 7: 135–62.

    Article  CAS  PubMed  Google Scholar 

  62. Boone JM, Velazquez O, Cherry SR (2004) Small-animal x-ray dose from micro-CT. Mol Imaging 3: 149–158.

    Article  PubMed  Google Scholar 

  63. Carlson SK, Classic KL, Bender CE et al (2007) Small animal absorbed radiation dose from micro-computed tomography imaging. Mol Imaging Biol 9: 78–82.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

 Dr. Ritman’s micro-CT work was supported in part by National Institutes of Health Grant, EB000305.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik L. Ritman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ritman, E.L. (2014). Design Considerations of Small-Animal CT Systems. In: Zaidi, H. (eds) Molecular Imaging of Small Animals. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0894-3_6

Download citation

Publish with us

Policies and ethics