Skip to main content
Log in

Numerical Simulations of Intra-voxel Dephasing Effects and Signal Voids in Gradient Echo MR Imaging using different Sub-grid Sizes

  • Research article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Signal void artifacts in gradient echo imaging are caused by the intra-voxel dephasing of the spins. Intra-voxel dephasing can be estimated by computing the field distribution on a sub-grid inside each picture element, followed by integration of all magnetization components. The strategy of computing the artifacts based on the integration of the sub-voxel signal components is presented here for different sub-grids. The coarseness of the sub-grid is directly related to computational effort. The possibility to save memory space and computing time for the dipole model by computing the field only on a sub-grid is addressed in the presented article. It is investigated as to how far computational time and memory space can be reduced by using an appropriate sub-grid. Numerical results for a model of a partially diamagnetically coated needle shaft are compared to experimental findings. In the case of a pure titanium needle, it is shown as being sufficient to compute the field distribution on a sub-grid that is at least four times coarser in each direction than the grid used to discretize the object in the related MR image. Due to three nested loops over the 3D grid, the need for memory space and time is saved by a factor 64. Deviations between measurements and simulations for the broad side of the artifact (uncompensated) and for the small side of the artifact (compensated) were 15.5%, respectively, 19.1% for orientation parallel to the exterior field, and 22.7%, respectively, 23.1% for orientation perpendicular to the exterior field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lufkin RB, Gronemeyer DH, Seibel RM (1997) Interventional MRI: update. Eur Radiol 7(5):187–200

    Article  PubMed  Google Scholar 

  2. Pereira PL, Fritz J, Koenig CW, Maurer F, Boehm P, Badke A, Mueller-Schimpfle M, Bitzer M, Claussen CD (2004) Preoperative marking of musculoskeletal tumors guided by magnetic resonance imaging. J Bone Joint Surg Am 86A(8):1761–1767

    PubMed  Google Scholar 

  3. Pereira PL, Günaydin I, Trübenbach J, Dammann F, Remy CT, Kötter I, Schick F, Koenig CW, Claussen CD (2000) Interventional MR imaging for injection of sacroiliac joints in patients with sacroiliitis. Am J Roentgenol 175:265–266

    CAS  Google Scholar 

  4. Gehl HB, Frahm C (1998) MRI-controlled biopsies. Radiologe 38(3):194–199

    Article  PubMed  CAS  Google Scholar 

  5. Mumtaz H, Harms SE (1999) Biopsy and intervention Working Group report. J Magn Reson Imaging 10(6):1010–1015

    Article  PubMed  CAS  Google Scholar 

  6. Gronemeyer DH, Seibel RM, Kaufman L (1991) Low-field design eases MRI-guided biopsies. Diagn Imaging (San Franc) 13(3):139–143

    CAS  Google Scholar 

  7. de Angelis GA, Moran RE, Fajardo LL, Mugler JP, Christopher JM, Harvey JA (2000) MRI-guided needle localization technique. Semin Ultrasound CT MR 21(5): 337–350

    Article  PubMed  Google Scholar 

  8. Jolesz FA, Blumenfeld SM (1994) Interventional use of magnetic resonance imaging. Magn Reson Q 10(2):85–96

    PubMed  CAS  Google Scholar 

  9. Zhang Q, Chung YC, Lewin JS, Duerk JL (1998) A method for simultaneous RF ablation and MRI. J Magn Reson Imaging 8(1):110–114

    Article  PubMed  CAS  Google Scholar 

  10. Vogl TJ, Müller PK, Hammerstingl R, Weinhold N, Mack MG, Philipp C, Deimling M, Beuthan J, Pegios W, Riess H, Lemmens HP, Felix R (1995) Malignant liver tumors treated with MR imaging-guided laser induced thermotherapy: technique and prospective results. Radiology 196(1):257–265

    PubMed  CAS  Google Scholar 

  11. Bui FM, Bott K, Mintchev MP (2000) A quantitative study of the pixel-shifting, blurring and non-linear distortions in MRI images caused by the presence of metal implants. J Med Eng Technol 24(1):20–27

    Article  PubMed  CAS  Google Scholar 

  12. Liu H, Martin AJ, Truwit CL (1998) Interventional MRI at high-field (1.5 T): needle artifacts. J Magn Reson Imaging 8(1):214–219

    Article  PubMed  CAS  Google Scholar 

  13. Ladd ME, Erhart P, Debatin JF, Romanowski BJ, Boesiger P, McKinnon GC (1996) Biopsy needle susceptibility artifacts. Magn Reson Med 36(4):646–651

    Article  PubMed  CAS  Google Scholar 

  14. Moscatel MA, Shellock FG, Morisoli SM (1995) Biopsy needles and devices: assessment of ferromagnetism and artifacts during exposure to a 1.5 T MR system. J Magn Reson Imaging 5(3):369–372

    Article  PubMed  CAS  Google Scholar 

  15. Melzer A, Schmidt A, Kipfmuller K, Gronemeyer DH, Seibel R (1997) Technology and principles of tomographic image-guided interventions and surgery. Surg Endosc 11(9):946–956

    Article  PubMed  CAS  Google Scholar 

  16. Schenck JF (1996) The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys 23(6):815–850

    Article  PubMed  CAS  Google Scholar 

  17. Fritzsche S, Thull R, Haase A (1994) Reduzierung von NMR-Bildartefakten durch Benutzung Optimierter Werkstoffe für Diagnostische Hilfsmittel und Implantate. Biomed Tech 39(3):42–46

    Article  CAS  Google Scholar 

  18. Müller-Bierl B, Graf H, Steidle G, Schick F (2005) Compensation of magnetic field distortions from paramagnetic instruments by added diamagnetic material: measurements and numerical simulations. Med Phys 32(1):76–84

    Article  PubMed  Google Scholar 

  19. Lide DR (2004) CRC handbook of chemistry and physics. CRC Press, Boca Raton

    Google Scholar 

  20. Sinha S, Sinha U, Lufkin R, Hanafee W (1989) Pulse sequence optimization for use with a biopsy needle in MRI. Magn Reson Imaging 7:575–579

    Article  PubMed  CAS  Google Scholar 

  21. Lüdeke KM, Röschmann P, Tischler R (1985) Susceptibility artefacts in NMR imaging. Magn Reson Imaging 3:329–343

    Article  PubMed  Google Scholar 

  22. Posse S, Aue WP (1990) Susceptibility artifacts in spin-echo and gradient-echo imaging. J Magn Reson 88:473–492

    Google Scholar 

  23. Bakker CJG, Bhagwandien R, Moerland MA, Fuderer M (1993) Susceptibility artifacts in 2DFT spin-echo and gradient-echo imaging: the cylinder model revisited. Magn Reson Imaging 11:539–548

    Article  PubMed  CAS  Google Scholar 

  24. Bakker CJG, Bhagwandien R, Moerland MA, Ramos LMP (1994) Simulation of susceptibility artifacts in 2D and 3D Fourier transform spin-echo and gradient-echo magnetic resonance imaging. Magn Reson Imag 12(5):767–774

    Article  CAS  Google Scholar 

  25. Bhagwandien R, van Ee R, Beersma R, Bakker CJG, Moerland MA, Lagendijk JJW (1992) Numerical analysis of the magnetic field for arbitrary magnetic susceptibility distributions in 2D. Magn Reson Imaging 10:299–313

    Article  PubMed  CAS  Google Scholar 

  26. Bhagwandien R, Moerland MA, Bakker CJG, Beersma R, Lagendijk JJW (1994) Numerical analysis of the magnetic field for arbitrary magnetic susceptibility distributions in 3D. Magn Reson Imaging 12:101–107

    Article  PubMed  CAS  Google Scholar 

  27. Kingsley PB (1995) Magnetic field gradients and coherence-pathway elimination. J Magn Reson B 109(3):243–250

    Article  PubMed  CAS  Google Scholar 

  28. Müller-Bierl B, Graf H , Lauer U , Steidle G, Schick F (2004) Numerical modeling of needle Tipp artifacts in MR gradient echo imaging. Med Phys 31(3):579–587

    Article  PubMed  Google Scholar 

  29. Müller-Bierl B, Graf H, Pereira P, Schick F (2005) Biopsy needles with markers: a numerical approach in assessing the influence of diamagnetic markers on needle artifacts. In: ICMP-BMT proceedings, Vol 368

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd M. Müller-Bierl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller-Bierl, B.M., Graf, H., Pereira, P.L. et al. Numerical Simulations of Intra-voxel Dephasing Effects and Signal Voids in Gradient Echo MR Imaging using different Sub-grid Sizes. Magn Reson Mater Phy 19, 88–95 (2006). https://doi.org/10.1007/s10334-006-0031-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-006-0031-5

Keywords

Navigation