Skip to main content

Advertisement

Log in

Proteases from phytopathogenic fungi and their importance in phytopathogenicity

  • Review
  • Published:
Journal of General Plant Pathology Aims and scope Submit manuscript

Abstract

Phytopathogenic fungi, causal agents of some of the world’s most serious plant diseases, can significantly reduce yields during large-scale agricultural production. Among the numerous hydrolytic enzymes they produce for nutritional and/or pathogenicity purposes, hydrolases and proteases are required for their growth and survival. The present review focuses on extracellular and/or secretory proteases from phytopathogenic fungi. Several extracellular proteases have been identified that contribute to fungal growth, infection structure formation, cell wall degradation, proteolytic processing of pathogenesis-related proteins and that act as elicitors of defense responses. In this review, the positive correlation between protease secretion and disease aggressiveness and/or necrosis is highlighted. The involvement of various fungal proteases in pathogenic mechanisms makes them potential targets for designing protease inhibitors that may provide an improved way to combat plant diseases, which in turn will reduce dependence on fungicides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Annis SL, Goodwin PH (1997) Recent advances in the molecular genetics of plant cell wall-degrading enzymes produced by plant pathogenic fungi. Eur J Plant Pathol 103:1–14

    Article  CAS  Google Scholar 

  • Ball AM, Ashby AM, Daniels MJ, Ingram DS, Johnstone K (1991) Evidence for the requirement of extracellular protease in the pathogenic interaction of Pyrenopeziza brassicae with oilseed rape. Physiol Mol Plant Pathol 38:147–161

    Article  Google Scholar 

  • Bindschedler LV, Sanchez P, Dunn S, Mikan J, Thangavelu M, Clarkson JM, Cooper RM (2003) Deletion of the SNP1 trypsin protease from Stagonospora nodorum reveals another major protease expressed during infection. Fungal Genet Biol 38:43–53

    Article  CAS  PubMed  Google Scholar 

  • Brown RL, Chen ZY, Cleveland TE, Cotty PJ, Cary JW (2001) Variation in in vitro α-amylase and protease activity is related to the virulence of Aspergillus flavus isolates. J Food Protect 64:401–404

    CAS  Google Scholar 

  • Chalfoun NR, Grellet-Bournonville CF, Martínez-Zamora MG, Díaz-Perales A, Castagnaro AP, Díaz-Ricci JC (2013) Purification and characterization of AsES protein: a subtilisin secreted by Acremonium strictum is a novel plant defense elicitor. J Biol Chem 288:14098–14113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandrasekaran M, Sathiyabama M (2014) Production, partial purification and characterization of protease from a phytopathogenic fungi Alternaria solani (Ell. and Mart.) Sorauer. J Basic Microbiol 54:763–774

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekaran M, Chandrasekar R, Sa T, Sathiyabama M (2014) Serine protease identification (in vitro) and molecular structure predictions (in silico) from a phytopathogenic fungus, Alternaria solani. J Basic Microbiol 54:S210–S218

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekaran M, Chandrasekar R, Chun S, Sathiyabama M (2016) Isolation, characterization and molecular three-dimensional structural predictions of metalloprotease from a phytopathogenic fungus, Alternaria solani (Ell. & Mart.) Sor. J Biosci Bioeng 122:131–139

    Article  CAS  PubMed  Google Scholar 

  • Cheng Z, Li JF, Niu Y, Zhang XC, Woody OZ, Xiong Y, Djonoć S, Millet Y, Bush J, McConkey BJ, Sheen J, Ausubel FM (2015) Pathogen-secreted proteases activate a novel plant immune pathway. Nature 521:213–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu J, Li WF, Cheng W, Lu M, Zhou KH, Zhou HQ, Li FG, Zhou CZ (2015) Comparative analyses of secreted proteins from the phytopathogenic fungus Verticillium dahliae in response to nitrogen starvation. Biochim Biophys Acta 1854:437–448

    Article  CAS  PubMed  Google Scholar 

  • de Souza PM, de Assis Bittencourt ML, Caprara CC, de Freitas M, de Almeida RPC, Silveira D, Fonseca YM, Filho EXF, Junior AP, Magalhães PO (2015) A biotechnology perspective of fungal proteases. Braz J Microbiol 46:337–346

    Article  PubMed  PubMed Central  Google Scholar 

  • Dobinson KF, Grant SJ, Kang S (2004) Cloning and targeted disruption, via Agrobacterium tumefaciens-mediated transformation, of a trypsin protease gene from the vascular wilt fungus Verticillium dahliae. Curr Genet 45:104–110

    Article  CAS  PubMed  Google Scholar 

  • Doi RH, Kosugi A (2004) Cellulosomes: plant-cell-wall degrading enzyme complexes. Nature Rev Microbiol 2:541–551

    Article  CAS  Google Scholar 

  • Dubovenko AG, Dunaevsky YE, Belozersky MA, Oppert B, Lord JC, Elpidina EN (2010) Trypsin-like proteins of the fungi as possible markers of pathogenicity. Fungal Biol 114:151–159

    Article  CAS  PubMed  Google Scholar 

  • Dunaevsky YE, Golubeva EA, Gruban TN, Beliakova GA, Belozersky MA (2001) Regulation of secretion of extracellular proteases by filamentous fungus Botrytis cinerea Fr. J Russ Phytopathol Soc 2:39–44

    Google Scholar 

  • Dunaevsky YE, Gruban TN, Belia Kova GA, Belozersky MA (2006) Extracellular proteinases of filamentous fungi as potential markers of phytopathogenesis (in Russian). Mikrobiologia 75:747–751

    Google Scholar 

  • Dunaevsky YE, Matveeva AR, Fatkhullina GN, Belyakova GA, Kolomiets TM, Kovalenko ED, Belozersky MA (2008) Extracellular proteases of mycelia fungi as participants of pathogenic process. Russ J Bioorg Chem 34:286–289

    Article  Google Scholar 

  • Feldman ML, Andreu AB, Korgan S, Lobato MC, Huarte M, Walling LL, Daleo GR (2014) PLPKI: a novel serine protease inhibitor as a potential biochemical marker involved in horizontal resistance to Phytophthora infestans. Plant Breed 133:275–280

    Article  CAS  Google Scholar 

  • Figueiredo A, Monteiro F, Sebastiana M (2014) Subtilisin-like proteases in plant–pathogen recognition and immune priming: a perspective. Front Plant Sci 5:739

    Article  PubMed  PubMed Central  Google Scholar 

  • Gregori R, Guidarelli M, Mari M (2010) Preliminary studies on partial reduction of Colletotrichum acutatum infection by proteinase inhibitors extracted from apple skin. Physiol Mol Plant Pathol 74:303–308

    Article  CAS  Google Scholar 

  • He XJ, Li XL, Li YZ (2015) Disruption of Cerevisin via Agrobacterium tumefaciens-mediated transformation affects microsclerotia formation and virulence of Verticillium dahliae. Plant Pathol 64:1157–1167

    Article  CAS  Google Scholar 

  • Horbach R, Navarro-Quesada AR, Knogge W, Deising HB (2011) When and how to kill a plant cell: infection strategies of plant pathogenic fungi. J Plant Physiol 168:51–62

    Article  CAS  PubMed  Google Scholar 

  • Inácio FD, Ferreira RO, Araujo CAV, Brugnari T, Castoldi R, Peralta RM, Souza CGM (2015) Proteases of wood rot fungi with emphasis on the genus Pleurotus. BioMed Res Int 2015. doi:10.1155/2015/290161

  • Jashni MK, Mehrabi R, Collemare J, Mesarich CH, de Wit PJ (2015a) The battle in the apoplast: further insights into the roles of proteases and their inhibitors in plant–pathogen interactions. Front Plant Sci 6:584

    Article  PubMed  PubMed Central  Google Scholar 

  • Jashni MK, Dols HMI, Iida Y, Boeren S, Beenen HG, Mehrabi R, Collemare J, de Wit PJ (2015b) Synergistic action of a metalloprotease and a serine protease from Fusarium oxysporum f. sp. lycopersici cleaves chitin-binding tomato chitinases, reduces their antifungal activity and enhances fungal virulence. Mol Plant Microbe Interact 28:996–1008

    Article  CAS  PubMed  Google Scholar 

  • Jia Y, McAdams SA, Bryan GT, Hershey HP, Valent B (2000) Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J 19:4004–4014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juge N (2006) Plant protein inhibitors of cell wall degrading enzymes. Trends Plant Sci 11:359–367

    Article  CAS  PubMed  Google Scholar 

  • Kasana RC, Salwan R, Yadav SK (2011) Microbial proteases: detection, production, and genetic improvement. CRC Crit Rev Microbiol 37:262–276

    Article  CAS  Google Scholar 

  • Kubicek CP, Starr TL, Glass NL (2014) Plant cell wall-degrading enzymes and their secretion in plant-pathogenic fungi. Annu Rev Phytopathol 52:427–451

    Article  PubMed  Google Scholar 

  • Kudryavtseva OA, Dunaevsky YE, Kamzolkina OV, Belozersky MA (2008) Fungal proteolytic enzymes: features of the extracellular proteases of xylotrophic basidiomycetes. Microbiology 77:643–653

    Article  CAS  Google Scholar 

  • Kudryavtseva NN, Sofyin AV, Revina TA, Gvozdeva EL, Ievleva EV, Valueva TA (2013) Secretion of proteolytic enzymes by three phytopathogenic microorganisms. Appl Biochem Microbiol 49:514–520

    Article  CAS  Google Scholar 

  • Lange J, Mohr U, Wiemken A, Boller T, Vögeli-Lange R (1996) Proteolytic processing of class IV chitinase in the compatible interaction of bean roots with Fusarium solani. Plant Physiol 111:1135–1144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lebeda A, Luhova L, Sedlarova D, Jancova D (2001) The role of enzymes in plant–fungal pathogens interactions. J Plant Dis Protect 108:89–111

    CAS  Google Scholar 

  • Mandujano-González V, Arana-Cuenca A, Anducho-Reyes MÁ, Téllez-Jurado A, González-Becerra AE, Mercado-Flores Y (2013) Biochemical study of the extracellular aspartyl protease Eap1 from the phytopathogen fungus Sporisorium reilianum. Protein Expr Purif 92:214–222

    Article  PubMed  Google Scholar 

  • Mercado-Flores Y, Hernández-Rodríguez C, Ruiz-Herrera J, Villa-Tanaca L (2003) Proteinases and exopeptidases from the phytopathogenic fungus Ustilago maydis. Mycologia 95:327–339

    Article  CAS  PubMed  Google Scholar 

  • Movahedi S, Heale JB (1990) Purification and characterization of an aspartic proteinase secreted by Botrytis cinerea Pers ex. Pers in culture and in infected carrots. Physiol Mol Plant Pathol 36:289–302

    Article  CAS  Google Scholar 

  • Murphy JM, Walton JD (1996) Three extracellular proteases from Cochliobolus carbonum: cloning and targeted disruption of ALP1. Mol Plant Microbe Interact 9:290–297

    Article  CAS  PubMed  Google Scholar 

  • Nakajima M, Akutsu K (2014) Virulence factors of Botrytis cinerea. J Gen Plant Pathol 80:15–23

    Article  CAS  Google Scholar 

  • Naumann TA, Price NP (2012) Truncation of class IV chitinases from Arabidopsis by secreted fungal proteases. Mol Plant Pathol 13:1135–1139

    Article  CAS  PubMed  Google Scholar 

  • Olivieri F, Zanetti ME, Oliva CR, Covarrubias AA, Casalongué CA (2002) Characterization of an extracellular serine protease of Fusarium eumartii and its action on pathogenesis related proteins. Eur J Plant Pathol 108:63–72

    Article  CAS  Google Scholar 

  • Olivieri FP, Maldonado S, Tonón CV, Casalongué CA (2004) Hydrolytic activities of Fusarium solani and Fusarium solani f. sp. eumartii associated with the infection process of potato tubers. J Phytopathol (Berlin) 152:337–344

    Article  Google Scholar 

  • Pekkarinen AI, Jones BL, Niku-Paavola ML (2002) Purification and properties of an alkaline proteinase of Fusarium culmorum. Eur J Biochem 269:798–807

    Article  CAS  PubMed  Google Scholar 

  • Poussereau N, Creton S, Brillon-Grand G, Rascle C, Fevre M (2001) Regulation of acp1, encoding a non-aspartyl acid protease expressed during pathogenesis of Sclerotinia sclerotiorum. Microbiology 147:717–726

    Article  CAS  PubMed  Google Scholar 

  • Rawlings ND, Barrett AJ, Bateman A (2012) MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucl Acids Res 40:D343–D350

    Article  CAS  PubMed  Google Scholar 

  • Redman RS, Rodriguez RJ (2002) Characterization and isolation of an extracellular serine protease from the tomato pathogen Colletotrichum coccodes (Wallr.), and its role in pathogenicity. Mycol Res 106:1427–1434

    Article  CAS  Google Scholar 

  • Rolland S, Bruel C, Rascle C, Girard V, Billon-Grand G, Poussereau N (2009) pH controls both transcription and post-translational processing of the protease BcACP1 in the phytopathogenic fungus Botrytis cinerea. Microbiology 155:2097–2105

    Article  CAS  PubMed  Google Scholar 

  • Ryan CA (1990) Protease inhibitors in plants: genes for improving defenses against insects and pathogens. Annu Rev Plant Pathol 28:425–449

    CAS  Google Scholar 

  • Saitoh H, Fujisawa S, Ito A, Mitsuoka C, Berberich T, Tosa Y, Asakura M, Takano Y, Terauchi R (2009) SPM1 encoding a vacuole-localized protease is required for infection-related autophagy of the rice blast fungus Magnaporthe oryzae. FEMS Microbiol Lett 300:115–121

    Article  CAS  PubMed  Google Scholar 

  • Silva Y, Portieles R, Pujol M, Terauchi R, Matsumura H, Serrano M, Hidalgo OB (2013) Expression of a microbial serine proteinase inhibitor gene enhances the tobacco defense against oomycete pathogens. Physiol Mol Plant Pathol 84:99–106

    Article  CAS  Google Scholar 

  • Slavokhotova AA, Naumann TA, Price NPJ, Rogozhin EA, Andreev YA, Vassilevski AA, Odintsova TI (2014) Novel mode of action of plant defense peptides—hevein like antimicrobial peptides from wheat inhibit fungal metalloproteases. FEBS J 281:4754–4764

    Article  CAS  PubMed  Google Scholar 

  • Soberanes-Gutiérrez CV, Juárez-Montiel M, Olguín-Rodríguez O, Hernández-Rodríguez C, Ruiz-Herrera J, Villa-Tanaca L (2015) The pep4 gene encoding proteinase A is involved in dimorphism and pathogenesis of Ustilago maydis. Mol Plant Pathol 16:837–846

    Article  PubMed  Google Scholar 

  • Sreedhar L, Kobayashi DY, Bunting TE, Hillman BI, Belanger FC (1999) Fungal proteinase expression in the interaction of the plant pathogen Magnaporthe poae with its host. Gene 235:121–129

    Article  CAS  PubMed  Google Scholar 

  • St. Leger RJ, Joshi L, Roberts DW (1997) Adaptation of proteases and carbohydrases of saprophytic, phytopathogenic and entomopathogenic fungi to the requirements of their ecological niches. Microbiology 143:1983–1992

    Article  CAS  PubMed  Google Scholar 

  • Staples RC, Mayer AM (1995) Putative virulence factors of Botrytis cinerea acting as a wound pathogen. FEMS Microbiol Lett 134:1–7

    Article  CAS  Google Scholar 

  • ten Have A, Espino JJ, Dekkers E, Van Sluyter SC, Brito N, Kay J, González C, van Kan JAL (2010) The Botrytis cinerea aspartic proteinase family. Fungal Genet Biol 47:53–65

    Article  PubMed  Google Scholar 

  • Tucker SL, Talbot NJ (2001) Surface attachment and pre-penetration stage development by plant pathogenic fungi. Annu Rev Phytopathol 39:385–417

    Article  CAS  PubMed  Google Scholar 

  • Turra D (2006) Expression profiles of potato proteinase inhibitors potentially useful for the control of phytopathogenic fungi. J Plant Pathol 88:S3

    Google Scholar 

  • Valueva TA, Kudryavtseva NN, Sof’in AV, Revina TA, Gvozdeva EL, Ievleva EV (2011) Comparative analyses of exoproteinases produced by three phytopathogenic microorganisms. J Pathogens 2011. doi:10.4061/2011/947218

  • Valueva TA, Kudryavtseva NN, Gvozdeva EL, Sof’in AV, Iľina NA, Pobedinskaya MA, Elansky SN (2013) Serine proteinases secreted by two isolates of the fungus Alternaria solani. J Basic App Sci 9:105–115

    Google Scholar 

  • Valueva TA, Kudryavtseva NN, Sof’i AV, Zaitchik BT, Pobedinskaya MA, Kokaeva LY, Elansky SN (2015) Serine exoproteinases secreted by the pathogenic fungi of Alternaria genus. J Plant Pathol Microb 6:272

    Article  Google Scholar 

  • Zaferanloo B, Quang TD, Daumoo S, Ghorbani MM, Mahon PJ, Palombo EA (2014) Optimization of protease production by endophytic fungus, Alternaria alternata, isolated from an Australian native plant. World J Microbiol Biotechnol 30:1755–1762

    Article  CAS  PubMed  Google Scholar 

  • Zhao ML, Huang JS, Mo MH, Zhang KQ (2005) A potential virulence factor involved in fungal pathogenicity: serine-like protease activity of nematophagous fungus Clonostachys rosea. Fungal Divers 19:217–234

    Google Scholar 

Download references

Acknowledgments

This article was supported by the KU Brain Pool (2016–2017) of Konkuk University, Seoul Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muthukrishnan Sathiyabama.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandrasekaran, M., Thangavelu, B., Chun, S.C. et al. Proteases from phytopathogenic fungi and their importance in phytopathogenicity. J Gen Plant Pathol 82, 233–239 (2016). https://doi.org/10.1007/s10327-016-0672-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10327-016-0672-9

Keywords

Navigation