Skip to main content
Log in

Characterization of Trichoderma species isolated in Ecuador and their antagonistic activities against phytopathogenic fungi from Ecuador and Japan

  • Fungal Diseases
  • Published:
Journal of General Plant Pathology Aims and scope Submit manuscript

Abstract

Native Trichoderma spp. were isolated from agricultural fields in several regions of Ecuador. These isolates were characterized via morphological observation as well as molecular phylogenetic analysis based on DNA sequences of the rDNA internal transcribed spacer region, elongation factor-1α gene and RNA polymerase subunit II gene. Fifteen native Trichoderma spp. were identified as T. harzianum, T. asperellum, T. virens and T. reesei. Some of these strains showed strong antagonistic activities against several important pathogens in Ecuador, such as Fusarium oxysporum f. sp. cubense (Panama disease) and Mycosphaerella fijiensis (black Sigatoka) on banana, as well as Moniliophthora roreri (frosty pod rot) and Moniliophthora perniciosa (witches’ broom disease) on cacao. The isolates also showed inhibitory effects on in vitro colony growth tests against Japanese isolates of Fusarium oxysporum f. sp. lycopersici, Alternaria alternata and Rosellinia necatrix. The native Trichoderma strains characterized here are potential biocontrol agents against important pathogens of banana and cacao in Ecuador.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdullah F, Ilias GNM, Nelson M (2007) Hyperparasitic mechanisms employed by the fungal biocontrol agent in a TrichodermaGanoderma interaction. In: Exploring life as a catalyst for technological advancement. Proc 9th Symp Malaysian Soc Appl Biol, Universiti Sains Malaysia. Malaysian Soc Appl Biol, Kuala Lumpur, pp 107–130

  • Adebesin AA, Odebode CA, Ayodele AM (2009) Control of postharvest rots of banana fruits by conidia and culture filtrates of Trichoderma asperellum. J Plant Prot Res 3:302–308

    Google Scholar 

  • Aime MC, Phillips-Mora W (2005) The causal agents of witches’ broom and frosty pod rot of cacao (chocolate, Theobroma cacao) form a new lineage of Marasmiaceae. Mycologia 97:1012–1022

    Article  CAS  PubMed  Google Scholar 

  • Bowers JH, Bailey BA, Hebbar PK, Sanogo S, Lumsden RD (2001) The impact of plant diseases on world chocolate production. Plant Health Progress. doi:10.1094/PHP-2001-0709-01-RV (online)

    Google Scholar 

  • Carsolio C, Gutiérrez A, Jiménez B, Van Montagu M, Herrera-Estrella A (1994) Characterization of ech-42, a Trichoderma harzianum endochitinase gene expressed during mycoparasitism. Proc Natl Acad Sci USA 91:10903–10907

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chaverri P, Castlebury LA, Samuels G, Geiser DM (2003) Multilocus phylogenetic structure within the Trichoderma harzianum/Hypocrea lixii complex. Mol Phylogenet Evol 27:302–313

    Article  CAS  PubMed  Google Scholar 

  • Druzhinina IS, Kopchinskiy AG, Komoń M, Bissett J, Szakacs G, Kubicek CP (2005) An oligonucleotide barcode for species identification in Trichoderma and Hypocrea. Fungal Genet Biol 42:813–828

    Article  CAS  PubMed  Google Scholar 

  • Druzhinina IS, Kubicek CP, Komoń-Zelazowska M, Mulaw TB, Bissett J (2010) The Trichoderma harzianum demon: complex speciation history resulting in coexistence of hypothetical biological species, recent agamospecies and numerous relict lineages. BMC Evol Biol 10:94

    Article  PubMed Central  PubMed  Google Scholar 

  • Elad Y, Chet I, Henis Y (1981) Biological control of Rhizoctonia solani in strawberry fields by Trichoderma harzianum. Plant Soil 60:245–254

    Article  Google Scholar 

  • Ezziyyani M, Pérez Sánchez C, Sid Ahmed A, Requema ME, Candela ME (2004) Trichoderma harzianum como biofungicida para el biocontrol de Phytophthora capsici en plantas de pimiento (Capsicum annuum L) (in Spanish). Anal Biol 26:35–45

    Google Scholar 

  • Garber RC, Yoder OC (1983) Isolation of DNA from filamentous fungi and separation into nuclear, mitochondrial, ribosomal, and plasmid components. Anal Biochem 135:416–422

    Article  CAS  PubMed  Google Scholar 

  • Garcia Simões ML, Tauk-Tornisielo SM, Niella GR, Tapia Tapia DM (2012) Evaluation of Trichoderma spp. for the biocontrol of Moniliophthora perniciosa subgroup 1441. J Biol Life Sci 3:18–36

    Google Scholar 

  • Hanada RE, Pomella AWV, Soberanis W, Loguercio LL, Pereira JO (2009) Biocontrol potential of Trichoderma martiale against the black-pod disease (Phytophthora palmivora) of cacao. Biol Control 50:143–149

    Article  Google Scholar 

  • Harjono K, Widyastuti SM (2001) Optimization of endochitinase production from mycoparasitic fungi Trichoderma reesei. Indon J Plant Protect 7:55–58

    Google Scholar 

  • Harman GE, Chet I, Baker R (1981) Factors affecting Trichoderma hamatum applied to seeds as biocontrol agent. Phytopathology 71:569–572

    Article  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species-opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  CAS  PubMed  Google Scholar 

  • Hermosa MR, Grondona I, Iturriaga EA, Díaz-Mínguez JM, Castro C, Monte E, García-Acha I (2000) Molecular characterization and identification of biocontrol isolates of Trichoderma spp. Appl Environ Microbiol 66:1890–1898

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hjeljord LG, Tronsmo A (1998) Trichoderma and Gliocladium in biological control: an overview. In: Harman GE, Kubicek CP (eds) Trichoderma and Gliocladium, vol 2: Enzymes, biological control and commercial applications. Taylor and Francis, London; CRC Press, Boca Raton, pp 129–151

  • Hjeljord LG, Tronsmo A (2003) Effect of germination initiation on competitive capacity of Trichoderma atroviride P1 conidia. Phytopathology 93:1593–1598

    Article  PubMed  Google Scholar 

  • Hoyos-Carvajal L, Duque G, Orduz PS (2008) Antagonismo in vitro de Trichoderma spp. sobre aislamientos de Sclerotinia spp. y Rhizoctonia spp. (in Spanish). Rev Colomb Cienc Hortic 2:76–86

    Google Scholar 

  • Jeger MJ, Jeffries P, Elad Y, Xu XM (2009) A generic theoretical model for biological control of foliar plant diseases. J Theor Biol 256:201–214

    Article  CAS  PubMed  Google Scholar 

  • Karthikenyan M, Radhika K, Mathiyazhagan S, Bhaskaran R, Samiyappan R, Velazhahan R (2006) Induction of phenolics and defense-related enzymes in coconut (Cocos nucifera L.) roots treated with biocontrol agents. Braz J Plant Physiol 18:367–377

    Google Scholar 

  • Kim CS, Park MS, Kim SC, Maekawa N, Yu SH (2012) Identification of Trichoderma, a competitor of shiitake mushroom (Lentinula edodes), and competition between Lentinula edodes and Trichoderma species in Korea. Plant Pathol J 28:137–148

    Article  CAS  Google Scholar 

  • Kopchinskiy A, Komoń M, Kubicek CP, Druzhinina IS (2005) TrichoBLAST: a multilocus database of phylogenetic markers for Trichoderma and Hypocrea identifications. Mycol Res 109:658–660

    Article  PubMed  Google Scholar 

  • Krauss U, Hidalgo E, Bateman R, Adonijah V, Arroyo C, García J, Crozier J, Brown NA, Martijn ten Hoopen G, Holmes KA (2010) Improving the formulation and timing of application of endophytic biocontrol and chemical agents against frosty pod rot (Moniliophthora roreri) in cocoa (Theobroma cacao). Biol Control 54:230–240

    Article  CAS  Google Scholar 

  • Kullnig-Gradinger CM, Krupica T, Woo SL, Mach RL, Rey M, Benítez T, Lorito M, Kubicek CP (2001) Confusion abounds over identities of Trichoderma biocontrol isolates. Mycol Res 105:769–772

    Article  Google Scholar 

  • Kullnig-Gradinger CM, Szakacs G, Kubicek CP (2002) Phylogeny and evolution of the genus Trichoderma: a multigene approach. Mycol Res 106:757–767

    Article  CAS  Google Scholar 

  • Lieckfeldt E, Samuels GJ, Nirenberg HI, Petrini O (1999) A morphological and molecular perspective of Trichoderma viride: Is it one or two species? Appl Environ Microbiol 65:2418–2428

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu YJ, Hall BD (2004) Body plan evolution of ascomycetes, as inferred from an RNA polymerase II phylogeny. Proc Natl Acad Sci USA 101:4507–4512

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lo CT (1998) General mechanisms of action of microbial biocontrol agents. Plant Pathol Bull 7:155–166

    CAS  Google Scholar 

  • Matheny PB (2005) Improving phylogenetic inference of mushrooms with RPB1 and RPB2 nucleotide sequences (Inocybe, Agaricales). Mol Phylogenet Evol 35:1–20

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee M, Horwitz BA, Sherkhane PD, Hadar R, Mukherjee PK (2006) A secondary metabolite biosynthesis cluster in Trichoderma virens: evidence from analysis of genes underexpressed in a mutant defective in morphogenesis and antibiotic production. Curr Genet 50:193–202

    Article  CAS  PubMed  Google Scholar 

  • Nelson EB (1991) Handbook of applied mycology. In: Arora DK, Rai B, Mukerji KG, Knudsen GR (eds) Current limits to biological control of fungal phytopathogens Vol 1: Soil and plants. Marcel Dekker, New York, p 800

    Google Scholar 

  • Pérez L, Batlle A, Chacón J, Montenegro V (2009) Eficacia de Trichoderma harzianum A34 en el biocontrol de Fusarium oxysporum f. sp. cubense, agente causal de la marchitez de por fusarium o mal de Panamá de los bananos en Cuba (in spanish). Fitosanidad 4:259–263

    Google Scholar 

  • Ploetz RC (2006) Fusarium wilt of banana is caused by several pathogens referred to as Fusarium oxysporum f. sp. cubense. Phytopathology 96:653–656

    Article  PubMed  Google Scholar 

  • Qualhato TF, Cardoso Lopes FA, Stecca Steindorff A, Silva Brandão R, Amorim Jesuino RS, Ulhoa CJ (2013) Mycoparasitism studies of Trichoderma species against three phytopathogenic fungi: evaluation of antagonism and hydrolytic enzyme production. Biotechnol Lett 35:1461–1468

    Article  CAS  PubMed  Google Scholar 

  • Rosado IV, Rey M, Codón AC, Govantes J, Moreno-Mateos MA, Benítez T (2007) QID74 Cell wall protein of Trichoderma harzianum is envolved in cell protection and adherence to hydrophobic surfaces. Fungal Genet Biol 44:950–964

    Article  CAS  PubMed  Google Scholar 

  • Rubio MB, Hermosa R, Reino JL, Collado IG, Monte E (2008) Thctf1 transcription factor of Trichoderma harzianum is envolved in 6-pentyl-2H-pyran-2-one production and antifungal activity. Fungal Genet Biol 46:17–27

    Article  PubMed  Google Scholar 

  • Samuels GJ (2006) Trichoderma: systematics, the sexual state, and ecology. Proceedings of the Annual Meeting of the American Phytopathological Society. APS, Rehoboth Beach, pp 195–206

    Google Scholar 

  • Samuels GJ, Lieckfeldt E, Nirenberg HI (1999) Trichoderma asperellum, a new species with warted conidia, and redescription of Trichoderma viride. Sydowia 51:71–88

    Google Scholar 

  • Samuels GJ, Ismaiel A, Bon MC, De Respinis S, Petrini O (2010) Trichoderma asperellum sensu lato consist of two cryptic species. Mycologia 102:944–966

    Article  CAS  PubMed  Google Scholar 

  • Samuels GJ, Chaverri P, Farr DF, McCray EB (2014) Trichoderma online, systematic mycology and microbiology laboratory, ARS, USDA. http://nt.ars-grin.gov/taxadescriptions/keys/TrichodermaIndex.cfm

  • Scherm B, Schmoll M, Balmas V, Kubicek CP, Migheli Q (2009) Identification of potential marker genes for Trichoderma harzianum strains with high antagonistic potential against Rhizoctonia solani by a rapid subtraction hybridization approach. Curr Genet 55:81–91

    Article  CAS  PubMed  Google Scholar 

  • Seidl V, Gamauf C, Druzhinina I, Seiboth B, Hartl L, Kubicek C (2008) The Hypocrea jecorina (Trichoderma reesei) hypercellulolytic mutant RUT C30 lacks a 85 kb (29 gene-encoding) region of the wild-type genome. BMC Gen 9:327

    Article  Google Scholar 

  • Sharma K, Mishra AK, Misra RS (2009) Morphological, biochemical and molecular characterization of Trichoderma harzianum isolated for their efficiency as biological control agents. J Phytopathol 157:51–56

    Article  CAS  Google Scholar 

  • Stover RH (1962) Fusarial wilt (panama disease) of bananas and other Musa species. CMI, Kew

    Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Watanabe S, Kumakura K, Kato H, Iyozumi H, Togawa M, Nagayama K (2005) Identification of Trichoderma SKT-1, a biological control agent against seedborne pathogens of rice. J Gen Plant Pathol 71:351–356

    Article  CAS  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322

    Chapter  Google Scholar 

  • Woo SL, Lorito M (2007) Exploiting the interactions between fungal antagonists, pathogens and the plant for biocontrol. In: Vurro M, Gressel J (eds) Novel biotechnologies for biocontrol agent enhancement and management. Springer, Netherlands, pp 107–130

    Chapter  Google Scholar 

  • Wood GAR, Lass RA (eds) (2001) Tropical agricultural series, Cocoa, 4th edn. Blackwell Science, Oxford

    Google Scholar 

  • Zhang Cl, Druzhinina IS, Kubicek CP, Xu T (2005) Trichoderma biodiversity in China: evidence for a north to south distribution of species in East Asia. FEMS Microbiol Lett 251:251–257

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank T. Arie, T. Yasuda and D. G. Gilchrist for providing the fungal strains. This work was supported by the Global COE Program “Advanced Utilization of Fungus/Mushroom Resources for Sustainable Society in Harmony with Nature,” MEXT, Japan. We thank the National Secretary of Higher Education, Science, Technology and Education of Ecuador and the Biotechnology Research Center of Ecuador, Higher Polytechnic College of the Littoral CIBE-ESPOL for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motoichiro Kodama.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10327_2015_587_MOESM1_ESM.tiff

Supplementary material 1 (TIFF 920 kb) Supplementary Fig. 1. Dual cultures to test antagonism of Trichoderma harzianum strains (T1, T3, T15, T19, T20 and T36) against pathogenic fungi and single cultures of each fungal pathogen after 10 days at 25 °C. A 5-mm-diameter mycelial disk of the respective fungi was placed on plates with the pathogen on lower side, Trichoderma spp. on upper side. (Foc) Fusarium oxysporum f. sp. cubense (Fo-01), (Mf) Mycosphaerella fijiensis (Ec-01), (Mr) Moniliophthora roreri (Cp-01), (Mp) Mo. perniciosa (MrEO-1), (Fol) F. oxysporum f. sp. lycopersici (Chz1-A), (Aa) Alternaria alternata tomato pathotype (As-27), (Rn) Rosellinia necatrix (ES-0601).

10327_2015_587_MOESM2_ESM.tiff

Supplementary material 2 (TIFF 1114 kb) Supplementary Fig. 2. Dual cultures to test antagonism of Trichoderma harzianum strains (T2, T4, T5, T9, T10, T13 and T18) against pathogenic fungi and single cultures of each fungal pathogen after 10 days at 25°C. A 5-mm-diameter mycelial disk of the respective fungi was placed on plates with the pathogen on lower side, Trichoderma spp. on upper side. Pathogens: (Foc) Fusarium oxysporum f. sp. cubense (Fo-01), (Mf) Mycosphaerella fijiensis (Ec-01), (Mr) Moniliophthora roreri (Cp-01), (Mp) Mo. perniciosa (MrEO-1), (Fol) F. oxysporum f. sp. lycopersici (Chz1-A), (Aa) Alternaria alternata tomato pathotype (As-27), (Rn) Rosellinia necatrix (ES-0601).

10327_2015_587_MOESM3_ESM.tiff

Supplementary material 3 (TIFF 983 kb) Supplementary Fig. 3. Dual cultures to test antagonism of Trichoderma reesei strain (T29) and T. virens strain (T43) against pathogenic fungi and single cultures of each fungal pathogen after 10 days at 25°C. A 5-mm-diameter mycelial disk of the respective fungi was placed on plates with the pathogen on lower side, Trichoderma spp. on upper side. Pathogens: (Foc) Fusarium oxysporum f. sp. cubense (Fo-01), (Mf) Mycosphaerella fijiensis (Ec-01), (Mr) Moniliophthora roreri (Cp-01), (Mp) Mo. perniciosa (MrEO-1), (Fol) F. oxysporum f. sp. lycopersici (Chz1-A), (Aa) Alternaria alternata tomato pathotype (As-27), (Rn) Rosellinia necatrix (ES-0601).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galarza, L., Akagi, Y., Takao, K. et al. Characterization of Trichoderma species isolated in Ecuador and their antagonistic activities against phytopathogenic fungi from Ecuador and Japan. J Gen Plant Pathol 81, 201–210 (2015). https://doi.org/10.1007/s10327-015-0587-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10327-015-0587-x

Keywords

Navigation