Skip to main content
Log in

Therapeutic applications of resveratrol nanoformulations

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Resveratrol, or 3, 5, 4-trihydroxy-trans-stilbene, is a naturally occurring polyphenol present in several dietary sources such as grapes, soybeans, berries, pomegranate and peanuts. Resveratrol has received recent attention due to its diverse pharmacological activities. However, resveratrol clinical efficacy is limited due to its poor systemic bioavailability, of less than 1%, which is due to its low aqueous solubility, extensive first-pass metabolism and existence of enterohepatic recirculation. Therefore, in order to overcome these limitations, various nanocarriers including polymeric nanoparticles, solid lipid nanoparticles, liposomes, micelles and conjugates have been developed. These nanocarriers are able to enhance the bioavailability of resveratrol by modulating the P-glycoprotein, cytochrome P-450 enzymes and bypassing the hepatic first-pass effect. Here we review resveratrol nanoformulations for enhancing the efficacy of native resveratrol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Akbarzadeh A et al (2013) Liposome: classification, preparation, and applications. Nanoscale Res Lett 8(1):1. doi:10.1186/1556-276X-8-102

    Article  Google Scholar 

  • Al-Achi A, Lawrence J (2013) Micelles: chemotherapeutic drug delivery. Clin Pharmacol Biopharm 2:e114. doi:10.4172/2167-065X.1000e114

    Article  Google Scholar 

  • Albuquerque RV et al (2015) In vitro protective effect and antioxidant mechanism of resveratrol induced by dapsone hydroxylamine in human cells. PLoS ONE 10(8):e0134768. doi:10.1371/journal.pone.0134768

    Article  Google Scholar 

  • Allen TM (1997) Liposomes. Opportunities in drug delivery. Drugs 54(Suppl 4):8–14. doi:10.2165/00003495-199700544-00004

    Article  CAS  Google Scholar 

  • Almeida L et al (2009) Pharmacokinetic and safety profile of trans-resveratrol in a rising multiple-dose study in healthy volunteers. Mol Nutr Food Res 53(S1):S7–S15. doi:10.1002/mnfr.200800177

    Article  Google Scholar 

  • Arora D, Jaglan S (2016) Nanocarriers based delivery of nutraceuticals for cancer prevention and treatment: a review of recent research developments. Trends Food Sci Technol 54:114–126. doi:10.1016/j.tifs.2016.06.003

    Article  CAS  Google Scholar 

  • Arora D, Jaglan S (2017) Nanocarriers for resveratrol delivery. In: Ranjan S, Dasgupta N, Lichtfouse E (eds) Nanoscience in food and agriculture 5, sustainable agriculture reviews, vol 5. Springer, Cham, pp 123–138. doi:10.1007/978-3-319-58496-6_5

    Google Scholar 

  • Bu L et al (2013) Trans-resveratrol loaded chitosan nanoparticles modified with biotin and avidin to target hepatic carcinoma. Int J Pharm 452(1):355–362. doi:10.1016/j.ijpharm.2013.05.007

    Article  CAS  Google Scholar 

  • Buhrmann C, Shayan P, Popper B, Goel A, Shakibaei M (2016) Sirt1 is required for resveratrol-mediated chemopreventive effects in colorectal cancer cells. Nutrients 8(3):145. doi:10.3390/nu8030145

    Article  Google Scholar 

  • Carletto B et al (2016) Resveratrol-loaded nanocapsules inhibit murine melanoma tumor growth. Colloids Surf B Biointerfaces 144:65–72. doi:10.1016/j.colsurfb.2016.04.001

    Article  CAS  Google Scholar 

  • Carlson LJ, Cote B, Alani AW, Rao DA (2014) Polymeric micellar co-delivery of resveratrol and curcumin to mitigate in vitro doxorubicin-induced cardiotoxicity. J Pharm Sci 103(8):2315–2322. doi:10.1002/jps.24042

    Article  CAS  Google Scholar 

  • Chen Y, Zhang H, Yang J, Sun H (2015) Improved antioxidant capacity of optimization of a self-microemulsifying drug delivery system for resveratrol. Molecules 20(12):21167–21177. doi:10.3390/molecules201219750

    Article  CAS  Google Scholar 

  • Cheserek MJ et al (2016) Cardioprotective effects of lipoic acid, quercetin and resveratrol on oxidative stress related to thyroid hormone alterations in long-term obesity. J Nutr Biochem 33:36–44. doi:10.1016/j.jnutbio.2016.02.008

    Article  CAS  Google Scholar 

  • Coradini K et al (2015) A novel approach to arthritis treatment based on resveratrol and curcumin co-encapsulated in lipid-core nanocapsules: in vivo studies. Eur J Pharm Sci 78:163–170. doi:10.1016/j.ejps.2015.07.012

    Article  CAS  Google Scholar 

  • Cosco D et al (2015) Ultradeformable liposomes as multidrug carrier of resveratrol and 5-fluorouracil for their topical delivery. Int J Pharm 489(1):1–10. doi:10.1016/j.ijpharm.2015.04.056

    Article  CAS  Google Scholar 

  • Criqui MH, Ringel BL (1994) Does diet or alcohol explain the French paradox? Lancet 344(8939):1719–1723. doi:10.1016/S0140-6736(94)92883-5

    Article  CAS  Google Scholar 

  • da Rocha Lindner G et al (2015) Improved neuroprotective effects of resveratrol-loaded polysorbate 80-coated poly (lactide) nanoparticles in MPTP-induced Parkinsonism. Nanomedicine 10(7):1127–1138. doi:10.2217/nnm.14.165

    Article  Google Scholar 

  • Gescher AJ, Steward WP (2003) Relationship between mechanisms, bioavailibility, and preclinical chemopreventive efficacy of resveratrol: a conundrum. Cancer Epidemiol Biomark Prev 12(10):953–957

    CAS  Google Scholar 

  • Jung K-H et al (2015) Resveratrol-loaded polymeric nanoparticles suppress glucose metabolism and tumor growth in vitro and in vivo. Int J Pharm 478(1):251–257. doi:10.1016/j.ijpharm.2014.11.049

    Article  CAS  Google Scholar 

  • Kaldas MI, Walle UK, Walle T (2003) Resveratrol transport and metabolism by human intestinal Caco-2 cells. J Pharm Pharmacol 55(3):307–312. doi:10.1211/002235702612

    Article  CAS  Google Scholar 

  • Karthikeyan S, Prasad NR, Ganamani A, Balamurugan E (2013) Anticancer activity of resveratrol-loaded gelatin nanoparticles on NCI-H460 non-small cell lung cancer cells. Biomed Prev Nutr 3(1):64–73. doi:10.1016/j.bionut.2012.10.009

    Article  Google Scholar 

  • Karthikeyan S, Hoti SL, Prasad NR (2015) Resveratrol loaded gelatin nanoparticles synergistically inhibits cell cycle progression and constitutive NF-kappaB activation, and induces apoptosis in non-small cell lung cancer cells. Biomed Pharmacother 70:274–282. doi:10.1016/j.biopha.2015.02.006

    Article  CAS  Google Scholar 

  • Langcake P, Pryce R (1976) The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection or injury. Physiol Plant Pathol 9(1):77–86. doi:10.1016/0048-4059(76)90077-1

    Article  CAS  Google Scholar 

  • Lavu S, Boss O, Elliott PJ, Lambert PD (2008) Sirtuins—novel therapeutic targets to treat age-associated diseases. Nat Rev Drug Discov 7(10):841–853. doi:10.1038/nrd2665

    Article  CAS  Google Scholar 

  • Liu F-C, Tsai Y-F, Tsai H-I, Yu H-P (2015) Anti-inflammatory and organ-protective effects of resveratrol in trauma-hemorrhagic injury. Mediat Inflamm 2015:643763. doi:10.1155/2015/643763

    Google Scholar 

  • Lu L-Y et al (2015) Pomegranate seed oil exerts synergistic effects with trans-resveratrol in a self-nanoemulsifying drug delivery system. Biol Pharm Bull 38(10):1658–1662. doi:10.1248/bpb.b15-00371

    Article  CAS  Google Scholar 

  • Marier J-F, Vachon P, Gritsas A, Zhang J, Moreau J-P, Ducharme MP (2002) Metabolism and disposition of resveratrol in rats: extent of absorption, glucuronidation, and enterohepatic recirculation evidenced by a linked-rat model. J Pharmacol Exp Therap 302(1):369–373. doi:10.1124/jpet.102.033340

    Article  CAS  Google Scholar 

  • Mason TG, Wilking J, Meleson K, Chang C, Graves S (2006) Nanoemulsions: formation, structure, and physical properties. J Phys: Condens Matter 18(41):R635. doi:10.1088/0953-8984/18/41/R01

    CAS  Google Scholar 

  • Mattarei A et al (2013) Acetal derivatives as prodrugs of resveratrol. Mol Pharm 10(7):2781–2792. doi:10.1021/mp400226p

    Article  CAS  Google Scholar 

  • Meng J, Guo F, Xu H, Liang W, Wang C, Yang XD (2016) Combination therapy using co-encapsulated resveratrol and paclitaxel in liposomes for drug resistance reversal in breast cancer cells in vivo. Sci Rep 6:22390. doi:10.1038/srep22390

    Article  CAS  Google Scholar 

  • Montsko G et al (2008) Determination of products derived from trans-resveratrol UV photoisomerisation by means of HPLC–APCI-MS. J Photochem Photobiol A Chem 196(1):44–50. doi:10.1016/j.jphotochem.2007.11.011

    Article  CAS  Google Scholar 

  • Mudshinge SR, Deore AB, Patil S, Bhalgat CM (2011) Nanoparticles: emerging carriers for drug delivery. Saudi Pharm J SPJ Off Publ Saudi Pharm Soc 19(3):129–141. doi:10.1016/j.jsps.2011.04.001

    CAS  Google Scholar 

  • Neves AR, Lucio M, Lima JLC, Reis S (2012) Resveratrol in medicinal chemistry: a critical review of its pharmacokinetics, drug-delivery, and membrane interactions. Curr Med Chem 19(11):1663–1681. doi:10.2174/092986712799945085

    Article  CAS  Google Scholar 

  • Ng Y-J, Benson HAE, Brown DH, Chen Y (2015) Synthesis and characterization of novel copolymeric resveratrol conjugates. J Chem 2015:6. doi:10.1155/2015/245625

    Article  Google Scholar 

  • Nonomura S, Kanagawa H, Makimoto A (1963) Chemical Constituents of Polygonaceous Plants. I. Studies on the Components of Ko-J O-Kon. (Polygonum Cuspidatum Sieb. Et Zucc.). Yakugaku zasshi J Pharm Soc Japan 83:988–990

    Article  CAS  Google Scholar 

  • Pang X, Yang X, Zhai G (2014) Polymer-drug conjugates: recent progress on administration routes. Expert Opin Drug Deliv 11(7):1075–1086. doi:10.1517/17425247.2014.912779

    Article  CAS  Google Scholar 

  • Pangeni R, Sharma S, Mustafa G, Ali J, Baboota S (2014) Vitamin E loaded resveratrol nanoemulsion for brain targeting for the treatment of Parkinson’s disease by reducing oxidative stress. Nanotechnology 25(48):485102. doi:10.1088/0957-4484/25/48/485102

    Article  Google Scholar 

  • Park S et al (2016) Antibacterial nanocarriers of resveratrol with gold and silver nanoparticles. Mater Sci Eng, C 58:1160–1169. doi:10.1016/j.msec.2015.09.068

    Article  CAS  Google Scholar 

  • Penalva R, Esparza I, Larraneta E, González-Navarro CJ, Gamazo C, Irache JM (2015) Zein-based nanoparticles improve the oral bioavailability of resveratrol and its anti-inflammatory effects in a mouse model of endotoxic shock. J Agric Food Chem 63(23):5603–5611. doi:10.1021/jf505694e

    Article  CAS  Google Scholar 

  • Rai G, Mishra S, Suman S, Shukla Y (2016) Resveratrol improves the anticancer effects of doxorubicin in vitro and in vivo models: a mechanistic insight. Phytomedicine 23(3):233–242. doi:10.1016/j.phymed.2015.12.020

    Article  CAS  Google Scholar 

  • Rege SD, Geetha T, Griffin GD, Broderick TL, Babu JR (2014) Neuroprotective effects of resveratrol in Alzheimer disease pathology. Front Aging Neurosci 6:218. doi:10.3389/fnagi.2014.00218

    Article  Google Scholar 

  • Renaud Sd, de Lorgeril M (1992) Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 339(8808):1523–1526. doi:10.1016/0140-6736(92)91277-F

    Article  CAS  Google Scholar 

  • Saneja A, Dubey RD, Alam N, Khare V, Gupta PN (2014a) Co-formulation of P-glycoprotein substrate and inhibitor in nanocarriers: an emerging strategy for cancer chemotherapy. Curr Cancer Drug Targets 14(5):419–433. doi:10.2174/1568009614666140407112034

    Article  CAS  Google Scholar 

  • Saneja A, Khare V, Alam N, Dubey RD, Gupta PN (2014b) Advances in P-glycoprotein-based approaches for delivering anticancer drugs: pharmacokinetic perspective and clinical relevance. Expert Opin Drug Deliv 11(1):121–138. doi:10.1517/17425247.2014.865014

    Article  CAS  Google Scholar 

  • Sheu SY, Chen WS, Sun JS, Lin FH, Wu T (2013) Biological characterization of oxidized hyaluronic acid/resveratrol hydrogel for cartilage tissue engineering. J Biomed Mater Res A 101(12):3457–3466. doi:10.1002/jbm.a.34653

    Article  Google Scholar 

  • Siddalingappa B, Benson HA, Brown DH, Batty KT, Chen Y (2015) Stabilization of resveratrol in blood circulation by conjugation to mPEG and mPEG-PLA polymers: investigation of conjugate linker and polymer composition on stability, metabolism, antioxidant activity and pharmacokinetic profile. PLoS ONE 10(3):e0118824. doi:10.1371/journal.pone.0118824

    Article  Google Scholar 

  • Singh G, Pai RS (2014a) In-vitro/in vivo characterization of trans-resveratrol-loaded nanoparticulate drug delivery system for oral administration. J Pharm Pharmacol 66(8):1062–1076. doi:10.1111/jphp.12232

    CAS  Google Scholar 

  • Singh G, Pai RS (2014b) Optimized PLGA nanoparticle platform for orally dosed trans-resveratrol with enhanced bioavailability potential. Expert Opin Drug Deliv 11(5):647–659. doi:10.1517/17425247.2014.890588

    Article  CAS  Google Scholar 

  • Singh G, Pai RS (2014c) Recent advances of resveratrol in nanostructured based delivery systems and in the management of HIV/AIDS. J Control Release 194:178–188. doi:10.1016/j.jconrel.2014.09.002

    Article  CAS  Google Scholar 

  • Singh G, Pai RS (2015a) In vitro and in vivo performance of supersaturable self-nanoemulsifying system of trans-resveratrol. Artif cells Nanomed Biotechnol. doi:10.3109/21691401.2014.966192

    Google Scholar 

  • Singh G, Pai RS (2015b) Trans-resveratrol self-nano-emulsifying drug delivery system (SNEDDS) with enhanced bioavailability potential: optimization, pharmacokinetics and in situ single pass intestinal perfusion (SPIP) studies. Drug Deliv 22(4):522–530. doi:10.3109/10717544.2014.885616

    Article  CAS  Google Scholar 

  • Singh A, Ahmad I, Ahmad S, Iqbal Z, Ahmad FJ (2016) A novel monolithic controlled delivery system of resveratrol for enhanced hepatoprotection: nanoformulation development, pharmacokinetics and pharmacodynamics. Drug Dev Ind Pharm. doi:10.3109/03639045.2016.1151032

    Google Scholar 

  • Sirerol JA, Rodríguez ML, Mena S, Asensi MA, Estrela JM, Ortega AL (2015) Role of natural stilbenes in the prevention of cancer. Oxidative Med Cell longev. doi:10.1155/2016/3128951

    Google Scholar 

  • Solans C, Izquierdo P, Nolla J, Azemar N, Garcia-Celma M (2005) Nano-emulsions. Curr opinion in Colloid Interf Sci 10(3):102–110. doi:10.1016/j.cocis.2005.06.004

    Article  CAS  Google Scholar 

  • Soo E, Thakur S, Qu Z, Jambhrunkar S, Parekh HS, Popat A (2016) Enhancing delivery and cytotoxicity of resveratrol through a dual nanoencapsulation approach. J Colloid Interf Sci 462:368–374. doi:10.1016/j.jcis.2015.10.022

    Article  CAS  Google Scholar 

  • Summerlin N, Soo E, Thakur S, Qu Z, Jambhrunkar S, Popat A (2015) Resveratrol nanoformulations: challenges and opportunities. Int Journal Pharm 479(2):282–290. doi:10.1016/j.ijpharm.2015.01.003

    Article  CAS  Google Scholar 

  • Summerlin N et al (2016) Colloidal mesoporous silica nanoparticles enhance the biological activity of resveratrol. Colloids Surf B Biointerf 144:1–7. doi:10.1016/j.colsurfb.2016.03.076

    Article  CAS  Google Scholar 

  • Takaoka M (1940) Of the phenolic substances of white hellebore (Veratrum grandiflorum Loes. fil.). J Fac Sci Hokkaido Imp Univ 3:1–16

    CAS  Google Scholar 

  • Trela BC, Waterhouse AL (1996) Resveratrol: isomeric molar absorptivities and stability. J Agric Food Chem 44(5):1253–1257. doi:10.1021/jf9504576

    Article  CAS  Google Scholar 

  • Varoni EM, Faro AFL, Sharifi-Rad J, Iriti M (2016) Anticancer molecular mechanisms of resveratrol. Front Nutr. doi:10.3389/fnut.2016.00008

    Google Scholar 

  • Vian MA, Tomao V, Gallet S, Coulomb P, Lacombe J (2005) Simple and rapid method for cis-and trans-resveratrol and piceid isomers determination in wine by high-performance liquid chromatography using Chromolith columns. J Chromatogr A 1085(2):224–229. doi:10.1016/j.chroma.2005.05.083

    Article  CAS  Google Scholar 

  • Vijayakumar MR et al (2016) Intravenous administration of trans resveratrol loaded TPGS coated solid lipid nanoparticles for prolonged systemic circulation, passive brain targeting and improved in vitro cytotoxicity against C6 glioma cell lines. RSC Adv 6:50336–50348. doi:10.1039/C6RA10777J

    Article  CAS  Google Scholar 

  • Walle T, Hsieh F, DeLegge MH, Oatis JE, Walle UK (2004) High absorption but very low bioavailability of oral resveratrol in humans. Drug Metabol Dispos 32(12):1377–1382. doi:10.1124/dmd.104.000885

    Article  CAS  Google Scholar 

  • Yang S et al (2015) Resveratrol elicits anti-colorectal cancer effect by activating miR-34c-KITLG in vitro and in vivo. BMC Cancer 15(1):1. doi:10.1186/s12885-015-1958-6

    Article  Google Scholar 

  • Yazgan ÜC, Taşdemir E, Bilgin HM, Deniz Obay B, Şermet A, Elbey B (2015) Comparison of the anti-diabetic effects of resveratrol, gliclazide and losartan in streptozotocin-induced experimental diabetes. Arch Physiol Biochem 121(4):157–161. doi:10.3109/13813455.2015.1062898

    Article  CAS  Google Scholar 

  • Zu Y et al (2014) Preparation and in vitro/in vivo evaluation of resveratrol-loaded carboxymethyl chitosan nanoparticles. Drug Delivery. doi:10.3109/10717544.2014.924167

    Google Scholar 

Download references

Acknowledgements

SJ thankfully acknowledge the SERB, DST Govt. of India for Grant No. ECR/2017/001381. DA thankfully acknowledges the support in the form of research fellowships by Council of Scientific and Industrial Research (CSIR), New Delhi. The manuscript bears institutional communication No. IIIM/2151/2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sundeep Jaglan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, D., Jaglan, S. Therapeutic applications of resveratrol nanoformulations. Environ Chem Lett 16, 35–41 (2018). https://doi.org/10.1007/s10311-017-0660-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-017-0660-0

Keywords

Navigation