Skip to main content
Log in

Kinetic studies of the degradation of parabens in aqueous solution by ozone oxidation

  • Original Paper
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Ozone degradation of a mixture containing methylparaben, ethylparaben, propylparaben, butylparaben and benzylparaben was carried out in aqueous solution. The degradation followed the pseudo-first-order kinetic model and occurs with two ozonation stages with the observed rate constants of second stage ozonation, k obs2, being higher than the observed rate constants in first stage, k obs1. The k obs1 of parabens was found to increase exponentially whilst k obs2 was found to maximize at 35°C. Both k obs1 and k obs2 were found to decrease exponentially with respect to the initial concentration of parabens. Both pH and ozone dose showed positive effects on the rate of degradation. It was also observed that an ozone dose of 0.67 g/h resulted in the removal of 99% of parabens in 12 min, and also the removal of 61 and 32% of chemical oxygen demand (COD) and total organic carbon (TOC), respectively, in 3 h of ozonation time for a 500 μM of solution of parabens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

b :

Ratio of ozone consumption/parabens

C :

Concentration of parabens

D L,parabens :

Diffusivity of parabens in the liquid phase

\( D_{{{\text{L,O}}_{3} }} \) :

Diffusivity of ozone in the liquid phase

\( H_{{{\text{O}}_{3} }} \) :

Henry’s law for ozone in water

\( k_{{{\text{L,O}}_{3} }} \) :

Overall mass transfer coefficient of ozone

\( P_{{{\text{O}}_{3} }} \) :

Pressure of ozone applied during ozonation process

r :

Rate of reaction

S :

Surface area

t :

Time of reaction

References

  • Al Momani F, Shawaqfah M, Shawaqfeh A, Al-Shannag M (2008) Impact of fenton and ozone on oxidation of wastewater containing nitroaromatic compounds. J Environ Sci (China) 20:675–682. doi:10.1016/S1001-0742(08)62112-9

    CAS  Google Scholar 

  • Benijts T, Lambert W, De Leenheer A (2004) Analysis of multiple endocrine disruptors in environmental waters via wide-spectrum solid-phase extraction and dual-polarity ionization LC-ion trap-MS/MS. Anal Chem 76:704–711. doi:10.1021/ac035062x

    Article  CAS  Google Scholar 

  • Canosa P, Rodríguez I, Rubí E, Negreira N, Cela R (2006) Formation of halogenated by-products of parabens in chlorinated water. Anal Chim Acta 575:106–113. doi:10.1016/j.aca.2006.05.068

    Article  CAS  Google Scholar 

  • Chen JH, Hsu YC, Yang HC, Hsu CH (2003) Ozonation treatment of 2-nitrophenolic wastewater using a new gas-inducing reactor. Chem Eng Commun 190:1541–1561. doi:10.1080/714909156

    Article  CAS  Google Scholar 

  • Chen J, Ahn KC, Gee NA, Gee SJ, Hammock BD, Lasley BL (2007) Antiandrogenic properties of parabens and other phenolic containing small molecules in personal care products. Toxicol Appl Pharmacol 221:278–284. doi:10.1016/j.taap.2007.03.015

    Article  CAS  Google Scholar 

  • Darbre PD, Aljarrah A, Miller WR, Coldham NG, Sauer MJ, Pope GS (2004) Concentrations of parabens in human breast tumours. J Appl Toxicol 24:5–13. doi:10.1002/jat.958

    Article  CAS  Google Scholar 

  • Dodd MC, Buffle MO, von Gunten U (2006) Oxidation of antibacterial molecules by aqueous ozone: moiety-specific reaction kinetics and application to ozone-based wastewater treatment. Environ Sci Technol 40:1967–1977

    Google Scholar 

  • Huber MM, Ternes TA, von Gunten U (2004) Removal of estrogenic activity and formation of oxidation products during ozonation of 17 alpha-ethinylestradiol. Environ Sci Technol 38:5177–5186. doi:10.1021/es035205x

    Article  CAS  Google Scholar 

  • Ikehata K, Naghashkar NJ, El-Din MG (2006) Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation process: a review. Ozone Sci Eng 28:353–414. doi:10.1080/01919510600985937

    Article  CAS  Google Scholar 

  • Levenspiel O (1965) Chemical reaction engineering: an introduction to the design of chemical reactor. Wiley, New York

    Google Scholar 

  • Radovan C, Cinghiţă D, Manea F, Mincea M, Cofan C, Ostafe V (2008) Electrochemical sensing and assessment of parabens in hydro-alcoholic solutions and water using a boron-doped diamond electrode. Sensors 8:4330–4349. doi:10.3390/s8074330

    Article  CAS  Google Scholar 

  • Rosenfeldt EJ, Linden GL, Canonicam S, von Gunten U (2006) Comparison of the efficiency of OH radical formation during ozonation and the advanced oxidation processes O3/H2O2 and UV/H2O2. Water Res 40:3695–3704. doi:10.1016/j.watres.2006.09.008

    Article  CAS  Google Scholar 

  • Saunders FM, Gould JP, Southerland CR (1983) The effect of solute competition on ozonolysis of industrial dyes. Water Res 17:1407–1419. doi:10.1016/0043-1354(83)90272-5

    Article  CAS  Google Scholar 

  • Song S, Xia M, He Z, Ying H, Lü B, Chen J (2007) Degradation of p-nitrotoluene in aqueous solution by ozonation combined with sonolysis. J Hazard Mater 144:532–537. doi:10.1016/j.jhazmat.2006.10.067

    Article  CAS  Google Scholar 

  • Sowmya J (2008) European emerging trends and technologies include UV, ozone. Water Wastewater Int (April 2008). (http://www.pennnet.com/display_article/329727/20/ARTCL/none/none/1/European-Emerging-Trends-&-Technologies-include-UV,-Ozone/)

  • Spellman FR (1998) The science of water: concepts and applications. CRC, Boca Raton

    Google Scholar 

  • Staehelin J, Hoigné J (1985) Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions. Environ Sci Technol 19:1206–1213. doi:10.1021/es00142a012

    Article  CAS  Google Scholar 

  • Terasaka S, Inoue A, Tanji M, Kiyama R (2006) Expression profiling of estrogen-responsive genes in breast cancer cells treated with alkylphenols, chlorinated phenols, parabens, or bis and benzoylphenols for evaluation of estrogenic activity. Toxicol Lett 163:130–141. doi:10.1016/j.toxlet.2005.10.005

    Article  CAS  Google Scholar 

  • Trenholm RA, Vanderford BJ, Drewes JE, Snyder SA (2008) Determination of household chemicals using gas chromatography and liquid chromatography with tandem mass spectrometry. J Chromatogr A 1190:253–262. doi:10.1016/j.chroma.2008.02.032

    Article  CAS  Google Scholar 

  • Weinberg HS, Pereira VJ, Ye Z (2008) Drugs in drinking water: treatment options. In: Aga DS (ed) Fate of pharmaceuticals in the environment and in water treatment and in water treatment systems. CRC, New York, pp 217–227

    Google Scholar 

  • Wu JN, Eiteman MA, Law SE (1998) Evaluation of membrane filtration and ozonation processes for treatment of reactive-dye wastewater. J Environ Eng 124:272–277. doi:10.1061/(ASCE)0733-9372(1998)124:3(272)

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Malaysia Toray Science Foundation (MTSF) and University of Malaya. We thank Emeritus Professor Bernd R.T. Simoneit (Oregon State University) for improvement of the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kheng Soo Tay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tay, K.S., Rahman, N.A. & Radzi Bin Abas, M. Kinetic studies of the degradation of parabens in aqueous solution by ozone oxidation. Environ Chem Lett 8, 331–337 (2010). https://doi.org/10.1007/s10311-009-0229-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-009-0229-7

Keywords

Navigation