Skip to main content
Log in

Laser communication transmitter and receiver design

  • Published:
Journal of Optical and Fiber Communications Reports

Abstract

Free-space laser communication systems have the potential to provide flexible, high-speed connectivity suitable for long-haul intersatellite and deep-space links. For these applications, power-efficient transmitter and receiver designs are essential for cost-effective implementation. State-of-the-art designs can leverage many of the recent advances in optical communication technologies that have led to global wide-band fiber-optic networks with multiple Tbit/s capacities. While spectral efficiency has long been a key design parameter in the telecommunications industry, the many THz of excess channel bandwidth in the optical regime can be used to improve receiver sensitivities where photon efficiency is a design driver. Furthermore, the combination of excess bandwidth and average-power-limited optical transmitters has led to a new paradigm in transmitter and receiver design that can extend optimized performance of a single receiver to accommodate multiple data rates.

This paper discusses state-of-the-art optical transmitter and receiver designs that are particularly well suited for average-power-limited photon-starved links where channel bandwidth is readily available. For comparison, relatively simple direct-detection systems used in short terrestrial or fiber optic links are discussed, but emphasis is placed on mature high-performance photon-efficient systems and commercially available technologies suitable for operation in space. The fundamental characteristics of optical sources, modulators, amplifiers, detectors, and associated noise sources are reviewed along with some of the unique properties that distinguish laser communication systems and components from their RF counterparts. Also addressed is the interplay between modulation format, transmitter waveform, and receiver design, as well as practical tradeoffs and implementation considerations that arise from using various technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • B.L. Edwards, et. al., "Overview of the Mars laser communications demonstration project," in American Institute of Aeronautics and Astronautics, Space 2003 Conference & Exposition, 2003.

  • S.A. Townes, et. al., "The Mars laser communication demonstration," presented at IEEE Aerospace Conf., 2004.

  • E.A. Swanson and R.S. Bondurant, "Fiber-based free-space optical system," in US Pat. 5,062,150, 1991.

  • "Reliability assurance practices for optoelectronic devices in interoffice applications," Bellcore TR-NWT-000468 Issue 1, Dec. 1991.

  • "Generic reliability assurance requirements for optoelectronic devices used in telecommunications equipment," Telcordia GR-468-CORE no. 2, Dec. 2002.

  • "Generic requirements for fiber optic branching components," Bellcore GR-1209-CORE, Issue 1, Nov. 1994.

  • "Generic requirements for optical fiber amplifiers," GR-1312-CORE, Issue 2, Dec. 1996.

  • "Generic reliability assurance requirements for fiber optic branching components," GR-1221-CORE, Issue 1, Dec. 1994.

  • "Test methods and procedures for microelectronics," Military Standard MIL-STD-883C, Aug. 1983.

  • D.O. Caplan, M.L. Stevens, and D.M. Boroson, "Variable-rate communication system with optimal filtering," in US Pat. 6,694,104, 2004, (filed 1998).

  • D.O. Caplan, M.L. Stevens, D.M. Boroson, and J.E. Kaufmann, "A multi-rate optical communications architecture with high sensitivity," in LEOS, 1999.

  • M.L. Stevens, D.M. Boroson, and D.O. Caplan, "A novel variable-rate pulse-position modulation system with near quantum limited performance," in LEOS, 1999.

  • D.O. Caplan and W.A. Atia, "A quantum-limited optically-matched communication link," in Optical Fiber Conference (OFC), 2001.

  • D.O. Caplan and W.A. Atia, "Methods of achieving optimal communications performance," in US Pat. 7,181,097, 2007.

  • D.O. Caplan, B.S. Robinson, R.J. Murphy, and M.L. Stevens, "Demonstration of 2.5-Gslot/s optically-preamplified M-PPM with 4 photons/bit receiver sensitivity," in Optical Fiber Conference (OFC): Paper PDP23, 2005.

  • C.E. Shannon, "A mathematical theory of communication," Bell Syst. Technol. J. 27, 379-423, 623-656, 1948.

    MathSciNet  MATH  Google Scholar 

  • S. Haykin, Digital Communications (John Wiley & Sons, Inc., 1988).

  • J.G. Proakis and M. Salehi, Communication Systems Engineering (Prentice-Hall, Inc., 1994).

  • Peebles, Peyton Z. Jr., Digital Communications Systems (Englewood Cliffs, NJ: Prentice-Hall, 1987).

  • S.B. Alexander, Optical communication receiver design (Bellingham, Washington, USA: SPIE Optical Engineering Press, 1997).

  • D.O. Caplan, "High-performance free-space laser communications and future trends," in Optical Amplifiers and Their Applications (OAA'05) Topical Meeting, Budapest, Hungary, 2005.

  • D.O. Caplan, B.S. Robinson, M.L. Stevens, D.M. Boroson, and S.A. Hamilton, "High-Rate Photon-Efficient Laser Communications with Near Single Photon/bit Receiver Sensitivities," in Optical Fiber Conference (OFC), 2006.

  • D.M. Boroson, "Optical Communications, A Compendium of Signal Formats, Receiver Architectures, Analysis Mathematics, and Performance Comparisons," 2005.

  • T. Mizuochi, et. al., "Forward error correction based on block turbo code with 3-bit soft decision for 10-Gb/s optical communication systems," IEEE Sel. Top. Quantum Electron. 10, 376-386, 2004.

    Article  Google Scholar 

  • N.W. Spellmeyer, J.C. Gottschalk, D.O. Caplan, and M.L. Stevens, "High-sensitivity 40-Gb/s RZ-DPSK with forward error correction," IEEE Photon. Technol. Lett. 16, 1579-1581 (2004).

    Article  ADS  Google Scholar 

  • J.R. Pierce, "Optical Channels: Practical Limits with Photon Counting," IEEE Trans. Commun. COM-26, 1819-1821, 1978.

    Article  ADS  MathSciNet  Google Scholar 

  • Y. Yamamoto and H.A. Haus, "Preparation, measurement and information capacity of optical quantum states," Rev. Mod. Phys. 58, 1001-1020, 1986.

    Article  ADS  Google Scholar 

  • H.A. Haus, "Limits on communication using photons," in MIT-EECS Colloquium Series, 1997.

  • G.N. Gol'tsman, O. Okunev, G. Chulkova, A.L.A. Semenov, K. Smirnov, B. Voronov, A. Dsardanov, C. Williams, and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705-707, 2001.

    Article  ADS  Google Scholar 

  • K.A. McIntosh, et. al., "InGaAsP/InP avalanche photodiodes for photon counting at 1.06 μm," Appl. Phys. Lett. 81 (2002).

  • J. Zhang, W. Slysz, A. Verevkin, O. Okunev, G. Chulkova, A. Korneev, A. Lipatov, G.N. Gol'tsman, and R. Sobolewski, "Response time characterization of NbN superconducting single-photon detectors," IEEE Trans. App. Supercond. 13, 180-183, 2003.

    Article  Google Scholar 

  • K.A. McIntosh, et. al., "Arrays of III-V semiconductor Geiger-mode avalanche photodiodes," in LEOS, 2003.

  • B.S. Robinson, A.J. Kerman, E.A. Dauler, R.J. Barron, D.O. Caplan, M.L. Stevens, J.J. Carney, S.A. Hamilton, J.K.W. Yang, and K.K. Berggren, "781-Mbit/s Photon-Counting Optical Communications Using Superconducting NbN-Nanowire Detectors," Opt. Lett. 31, 444-446 (2006).

    Article  ADS  Google Scholar 

  • B.S. Robinson, A.J. Kerman, E.A. Dauler, R.J. Barron, D.O. Caplan, M.L. Stevens, J.J. Carney, S.A. Hamilton, J.K.W. Yang, and K.K. Berggren, "High-Data-Rate Photon-Counting Optical Communications Using a NbN Nanowire Superconducting Detector," in Conference on Lasers and Electro-Optics (CLEO), 2006.

  • E.A. Dauler, B.S. Robinson , A.J. Kerman, V. Anant, R.J. Barron, K. Berggren, D.O. Caplan, J.J. Carney, S.A. Hamilton, K.M. Rosfjord, M.L. Stevens, and J.K.W. Yang, "1.25-Gbit/s photon-counting optical communications using a twoelement superconducting nanowire single photon detector," in Proc. SPIE, (Advanced Photon Counting Techniques), 2006.

  • P.S. Henry, "Error-rate performance of optical amplifiers," in Optical Fiber Conference (OFC), 1989.

  • N.A. Olsson, "Lightwave Systems With Optical Amplifiers," J. Lightwave Technol. 7, 1071-1082 (1989).

    Article  ADS  Google Scholar 

  • P.A. Humblet and M. Azizoglu, "On bit error rate of lightwave systems with optical amplifiers," J. Lightwave Technol. 9 (1991).

  • S.D. Personick, "Receiver design for digital fiber optic communication systems, I & II," Bell Syst. Tech. J. 52, 843-886, 1973.

    Google Scholar 

  • S. Vanstone and P.C. v. Oorschot, An introduction to Error Correcting Codes with Applications (Kluwer Academic Publishers, 1989).

  • D.O. Caplan, J.C. Gottschalk, R.J. Murphy, N.W. Spellmeyer, M.L. Stevens, and A.M.D. Beling, "Performance of high-rate high-sensitivity optical communications with forward error correction coding," in Conference on Lasers and Electro-Optics (CLEO): Paper CPDD9, 2004.

  • B.E. Moision and J. Hamkins, "Coded modulation for the deep-space optical channel: serially concatenated pulse-position modulation," 42-161, 2005.

  • D.M. Boroson, C.C. Chen, and B.L. Edwards, "The Mars laser communication demonstration project: truly ultralong-haul optical transport," in Optical Fiber Conference (OFC), 2005.

  • P.I. Hopman, P.W. Boettcher, L.M. Candell, J.B. Glettler, R. Shoup, and G. Zogbi, "An End-to-End Demonstration of a Receiver Array Based Free-Space Photon Counting Communications Link," in SPIE, (Free-Space Laser Communications VI), vol. 6304, 2006.

  • R. Shoup, "Hardware implementation of a high-throughput 64-PPM serial concatenated turbo decoder," in SPIE, (Optical Information Systems IV), vol. 6311, 2006.

  • E.A. Swanson and R.S. Bondurant, "Using fiber optics to simplify free-space lasercom systems," in Proc. SPIE, (Free-Space Laser Communication Technologies II), 1218, 70-82 (1990).

    Article  ADS  Google Scholar 

  • R.M. Gagliardi and S. Karp, Optical Communication, 2nd Ed. (New York: John Wiley & Sons, Inc., 1995).

  • F.G. Walther, J.M. Roth, W.E. Keicher, A.E. DeCew, and "Wavelength division and polarization division multiple access free space optical terminal using a single aperture," in US Pat. Appl. 20040081466, 2004.

  • A.G. Bell and S. Tainter, "Photophone transmitter," in US Pat. 235,496, 1880.

  • A.G. Bell, "On the Production and Reproduction of Sound by Light," Am. J. Sci., 3rd Series, XX, 305-324 (1880).

    Google Scholar 

  • A.G. Bell and S. Tainter, "Photophonic receiver," in US Pat. 241,909, 1881.

  • A.G. Bell, C.A. Bell, and S. Tainter, "Transmitting and recording sounds by radiant energy," in US Pat. 324,213, 1886.

  • D. Killinger, "Free space optics for laser communication through the air," in Optics & Photonics News, 2002.

  • Hertz, "Heinrich Rudolf Hertz discovered GHz radio waves in 1887," 1887.

  • A.G. Bell, "Improvement in Telegraphy," in US Pat. 174,465, 1876.

  • T.A. Edison, "Telephones or Speaking Telegraphs," in US Pat. 203,018, 1878.

  • G. Marconi, "A system of telegraphy using Hertzian waves," in British Pat. 12039, (filed June 2, 1896, demonstrated Sept. 2, 1896), 1896.

  • M. Loomis, "Improvement in Telegraphing," in US Pat. 129,971, 1872 (first US wireless telegraphy patent).

  • R.A. Fessenden, "Wireless Telegraphy," in US Pat. 706,737, 1902, (filed 1901).

  • A.L. Schawlow and C.H. Townes., "Infrared and Optical Masers," Phys. Rev. 112, 1940-1949 (1958).

    Article  ADS  Google Scholar 

  • T.H. Maiman, "Stimulated optical radiation in ruby," Nature 187, 493 (1960).

    Article  ADS  Google Scholar 

  • T.H. Maiman, "Ruby Laser Systems," in US Pat. 3,353,115, 1967, (filed 1963).

  • A. Javan, Bennett, W.R. Jr., and D.R. Herriott, "Population Inversion and Continuous Optical Maser Oscillation in a Gas Discharge Containing a He-Ne Mixture," Phys. Rev. Lett. 6, 106-110, 1961.

    Article  ADS  Google Scholar 

  • "Research groups at GE, IBM, and Lincoln Laboratory at MIT demonstrated semiconductor lasers using gallium arsenide (GaAs) in 1962. (Courtesy W. Keicher)," 1962.

  • C.H. Gooch, Gallium Arsenide Lasers (New York: John Wiley & Sons, 1969).

  • C.J. Koester and E. Snitzer, "Amplification in a Fiber Laser," Appl. Opt. 3, 1182-86 (1964).

    ADS  Google Scholar 

  • E. Snitzer, "Means for producing and amplifying optical energy," in US Pat. 3,729,690, (filed 1969, 1961), 1973.

  • Z.I. Alferov, V.M. Andreev, D.Z. Garbuzov, Y.V. Zhilyaev, E.P. Morozov, E.L. Portnoi, and V.G. Trofim, "Investigation of the influence of the AlAs-GaAs heterostructure parameters on the laser threshold current and the realization of continuous emission at room temperature," Sov. Phys. Semicond. 4, 1573-1575 (1971).

    Google Scholar 

  • C.K. Kao and G.A. Hockham, "Dielectric-Fiber Surface Waveguides for Optical Frequencies," Proc. IEE 133, 1151-58 (1966).

    Google Scholar 

  • R.D. Maurer and P.C. Schultz, "Fused silica optical waveguide," in US Pat. 3,659,915, 1972, (filed 1970).

  • D.B. Keck and P.C. Schultz, "Method of producing optical waveguide fibers," in US Pat. 3,711,262, 1973, (filed 1970).

  • C.K. Kao and T.W. Davies, "Spectroscopic studies of ultra low loss optical glasses," J. Sci. Instrum. (1968).

  • F.P. Kapron, D.B. Keck, and R.D. Mauer, "Radiation losses in glass optical waveguides," Appl. Phys. Lett. 17, (1970).

  • E. Snitzer, "Cylindrical dielectric waveguide modes," J. Opt. Soc. Am. (1961).

  • E. Snitzer, H. Po, R.P. Tumminelli, and F. Hakimi, "Optical fiber lasers and amplifiers," in US Pat. 4,815,079, (filed 1987), 1989.

  • R.J. Mears, L. Reekie, I.M. Jauncey, and D.N. Payne, "Low-noise erbim-doped fibre amplifier operating at 1.54 μm," Electron. Lett. 23, 1026 (1987).

    Article  Google Scholar 

  • E. Desurvire, J.R. Simpson, and P.C. Becker, "High-gain erbium-doped traveling wave fiber amplifier," Opt. Lett. 12, 888 (1987).

    ADS  Google Scholar 

  • "TAT-8, the first trans-Atlantic fiber cable (2 × 280 Mb/s, 1.3 μm), was AT&T's 8th transatlantic telephone cable, in operation from 1988, initially carrying 40,000 telephone circuits between USA and France."

  • Y. Arimoto, M. Toyoshima, M. Toyoda, T. Takahashi, M. Shikatani, and K. Araki, "Preliminary result on laser communication experiment using Engineering Test Satellite-VI (ETS-VI)," in Proc. SPIE 2381, 1995.

  • K.E. Wilson, J.R. Lesh, K. Araki, and Y. Arimoto, "Preliminary results of the Ground/Orbiter Lasercom Demonstration experiment between Table Mountain and the ETS-VI satellite," in Proc. SPIE (Free-Space Laser Communication Technologies VIII), 1996.

  • K.E. Wilson, et. al., "Results from Phase-1 and Phase-2 GOLD experiments," Feb. 15 1997.

  • K.E. Wilson and J.R. Lesh, "Overview of the Ground-to-Orbit Lasercom Demonstration (GOLD)," in Proc. SPIE (Free-Space Laser Communication Technologies IX), 1997.

  • "TAT-12/13 (1996) first used optical amplification (EDFA) and ring topology."

  • A.R. Chraplyvy, A.H. Gnauck, R.W. Tkach, J.L. Zyskind, J.W. Sulhoff, A.J. Lucero, Y. Sun, R.M. Jopson, F. Forghieri, R.M. Derosier, C. Wolf, and A.R. McCormick, "1-Tb/s transmission experiment," Photonics Technol. Lett. 8, 1264-1266 (1996).

    Article  ADS  Google Scholar 

  • A.H. Gnauck, et. al., "One Terabit/s Transmission Experiment," presented at Optical Fiber Conference (OFC), 1996.

  • T. Morioka, et. al., "100 Gb/s × 10 Channel OTDM/WDM Transmission Using a Single Supercontinuum WDM Source," presented at Optical Fiber Conference (OFC), 1996.

  • H. Onaka, et. al., "1.1 Tb/s WDM Transmission over a 150 km 1.3 mm Zero-Dispersion Single-Mode Fiber," presented at Optical Fiber Conference (OFC), 1996.

  • KMI Corporation, Nashua, NH, USA.

  • S. Bigo, A. Bertaina, Y. Frignac, S. Borne, L. Lorcy, D. Hamoir, D. Bayart, J.-P. Hamaide, W. Idler, E. Lach, B. Franz, G. Veith, P. Sillard, L. Fleury, P. Gu'{enot, and P. Nouchi, "5.12 Tbit/s (128 × 40 Gbit/s WDM) transmission over 3 × 100 km of TeraLight fiber," in Proc. Eur. Conf. Optical Communications (ECOC), paper PD1.2, Munich, Germany, 2000.

  • W. Idler, S. Bigo, Y. Frignac, B. Franz, and G. Veith, "Vestigial side-band demultiplexing for ultra-high capacity (0.64 bit/s/Hz) of 128 × 40 Gbit/s channels," in Optical Fiber Conference (OFC), 2001.

  • K. Fukuchi, T. Kasamatsu, M. Morie, R. Ohhira, T. Ito, K. Sekiya, D. Ogasahara, and T. Ono, "10,92 Tb/s (273 × 40 Gb/s) triple band/ultra dense WDM optical repeatered transmission experiment," presented at Optical Fiber Conference (OFC), 2001.

  • S. Bigo, Y. Frignac, G. Charlet, W. Idler, S. Borne, H. Gross, R. Dischler, W. Poehlmann, P. Tran, C. Simonneau, D. Bayart, G. Veith, A. Jourdan, and J.-P. Hamaide, "10.2 Tbit/s (256 × 42.7 Gbit/s PDM/WDM) transmission over 100 km TeraLight fiber with 1.28 bit/s/Hz spectral efficiency," in Optical Fiber Conference (OFC), paper PD25, 2001.

  • Y. Frignac, G. Charlet, W. Idler, R. Dischler, P. Tran, S. Lanne, S. Borne, C. Martinelli, G. Veith, A. Jourdan, J.-P. Hamaide, and S. Bigo, "Transmission of 256 wavelength-division and polarization-division multiplexed channels at 42.7 Gb/s (10.2 Tb/s capacity) over 3 × 100 km of TeraLight fiber," in Optical Fiber Conference (OFC), 2002.

  • "Press Release: NRO GeoLITE Satellite Successfully Launched". {http://cartome.org/geolite .htm, 2001.

  • "Press Release: Delta Launches GeoLITE Satellite for U.S. NRO."

  • http://www.spaceandtech.com/digest/flash2001/flash2001-038.shtml Andrews Space &linebreak Technology, 2001.

  • "Press Release: NRO Awarded the David Packard Excellence in Acquisition Award". http://www.nro.gov/PressReleases/prs_rel62.html, 2002.

  • T.T. Nielsen and G. Oppenhaeuser, "In-orbit test result of an operational optical intersatellite link between ARTEMIS and SPOT4, SILEX," in Proc. SPIE, (Free-Space Laser Communication Technologies XIV), 2002.

  • T.T. Nielsen, G. Oppenhaeuser, B. Laurent, and G. Planche, "In-orbit test results of the optical intersatellite link, SILEX. A milestone in satellite communication," in 53rd International Astronautical Congress, IAC-02-M.2.01, 2002. item H.P. Lutz, "Optical Communications in Space--Twenty Years of ESA Effort," in ESA Bulletin ( http://esapub.esrin.esa.it/bulletin/bullet91/b91lutz.htm), 1, 25-31 (1997).

  • B.I. Edelson, J.N. Pelton, C.W. Bostian, W.T. Brandon, V.W.S. Chan, E.P. Hager, N.R. Helm, R.D. Jennings, R.K. Kwan, C.E. Mahle, E. F. Miller, and L. Riley, "Satellite Communications Systems And Technology," in http://www.wtec.org/loyola/satcom/, Loyola College in Maryland, 1993.

  • M. Reyes, S. Chueca, A. Alonso, T. Viera, and Z. Sodnik, "Analysis of the preliminary optical links between ARTEMIS and the Optical Ground Station," in Proc. SPIE 4821, 2003.

  • A. Alonso, M. Reyes, and Z. Sodnik, "Performance of satellite-to-ground communications link between ARTEMIS and the Optical Ground Station," in Proc. SPIE 5572, 2004.

  • D.M. Boroson, C.C. Chen, and B.L. Edwards, "The Mars laser communications demonstration project: truly ultralong-haul optical transport," in Optical Fiber Conference (OFC), 2005.

  • M. Toyoshima, "Special Report: Trends of research and development of optical space communications technology," Space Japan Review 12 - 1, No. 44, 2005.

  • E. Hecht, Optics, 2nd Ed. (Addison Wesley, 1987).

  • A. Biswas, K.E. Wilson, S. Piazzolla, J.P. Wu, and W.H. Farr, "Deep-space optical communications link availability and data volume," in Proc. SPIE 5338, 175 (2004).

    Article  ADS  Google Scholar 

  • F.I. Khatri, D.M. Boroson, D.V. Murphy, and J. Sharma, "Link analysis of Mars-Earth optical communications system," in Proc. SPIE 5338, 143 (2004).

    Article  ADS  Google Scholar 

  • F.I. Khatri and A. Biswas, "Signal and Background Levels for the Mars Lasers Communications Demonstration (MLCD)," in IEEE LEOS Summer Topical Meetings, 2005.

  • R.W. Boyd, Nonlinear Optics (New York: Academic Press, Inc., 2003).

  • G.P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (New York: Academic Press, Inc., 1995).

  • W.E. Webb and J.T. Marino, Jr., "Threshold detection in an on-off binary communications channel with atmospheric scintillation," Appl. Opt. 14, 1413-1417 (1975).

    Article  ADS  Google Scholar 

  • W.C. Brown, "Optimum Thresholds for Optical On-Off Keying Receivers Operating in the Turbulent Atmosphere," in Proc. SPIE, (Free-Space Laser Communication Technologies IX), vol. 2290, 254-261 (1997).

  • H. Haunstein, R. Schlenk, and K. Sticht, "Control of Combined Electrical Feed-Forward and Decision Feedback Equalization by Conditional Error Counts from FEC in the Presence of PMD," in Optical Fiber Conference (OFC), 2003.

  • D.M. Castagnozzi, "Digital signal processing and electronic equalization (EE) of ISI," in Optical Fiber Conference (OFC), 2004.

  • M. Schwartz, W.R. Bennett, and S. Stein, Communication Systems and Techniques (New York: IEEE Press, 1996).

  • S.D. Personick, P. Balaban, J. Bobsin, and P. Kumar, "A Detailed Comparison of Four Approaches to the Calculation of the Sensitivity of Optical Fiber System Receivers," IEEE Trans. Comm. 25, 541-548 (1977).

    Article  ADS  Google Scholar 

  • R.G. Smith and S.D. Personick, Semiconductor devices for optical communication (New York: Springer-Verlag, 1982), vol. 39.

  • S.O. Rice, "Mathematical analysis of random noise," Bell Syst. Technol. J. 24, 46-156 (1945).

    MATH  MathSciNet  Google Scholar 

  • S. Stein and J.J. Jones, Modern communication principles (New York: McGraw-Hill, 1967).

  • Saleh, B.E.A. and M.C. Teich, Fundamentals of Photonics (New York: Wiley, 1991).

  • T. Li and M.C. Teich, "Bit-Error Rate For A Lightwave Communication System Fibre Amplifier Incorporating An Erbium-doped Fibre Amplifier," Electron. Lett. 27, 598-599 (1991).

    Article  Google Scholar 

  • T. Li and M.C. Teich, "Photon Point Process for Traveling-Wave Laser Amplifiers," IEEE J. Quantum Electron. 29, 2568-2578 (1993).

    Article  ADS  Google Scholar 

  • W.S. Wong, H.A. Haus, L.A. Jiang, P.B. Hansen, and M. Margalit, "Photon statistics of amplified spontaneous emission noise in a 10-Gbitys optically preamplified direct-detection receiver," Opt. Lett. 23, 1832-834 (1998).

    ADS  Google Scholar 

  • W.S. Wong, J.D. Moores, J. Korn, and H.A. Haus, "Photon statistics of NRZ signals in high-bit-rate optically pre-amplified direct detection receiver," Optical Fiber Conference (OFC), 1999.

  • E. Desurvire, Erbium-doped fiber amplifiers (New York: John Wiley & Sons, 1994).

  • H.A. Haus, Electromagnetic Noise and Quantum Optical Measurements (Springer-Verlag, 2000).

  • J.C. Livas, "High sensitivity optically preamplified 10 Gb/s receivers," in Optical Fiber Conference (OFC), Paper PD4, 1996.

  • W.A. Atia and R.S. Bondurant, "Demonstration of return-to-zero signaling in both OOK and DPSK formats to improve receiver sensitivity in an optically preamplified receiver," in LEOS, 1999.

  • A.H. Gnauck, S. Chandrasekhar, J. Leuthold, and L. Stulz, "Demonstration of 42.7-Gb/s DPSK receiver with 45 photons/bit sensitivity," IEEE Photon. Technol. Lett. 15, 99-101 (2003).

    Article  ADS  Google Scholar 

  • J.H. Sinsky, A. Adamiecki, A.H. Gnauck, C.A. Burrus, J. Leuthold, O. Wohlgemuth, and A. Umbach, "A 42.7-Gb/s Integrated Balanced Optical Front End with Record Sensitivity," in Optical Fiber Conference (OFC): Paper PD39-1, 2003.

  • A.H. Gnauck and P.J. Winzer, "Optical phase-shift-keyed transmission," J. Lightwave Technol. 23, 115-130 (2005).

    Article  ADS  Google Scholar 

  • D.O. Caplan, M.L. Stevens, J.J. Carney, and R.J. Murphy, "Demonstration of Optical DPSK Communication with 25 Photons/Bit Sensitivity," in Conference on Lasers and Electro-Optics (CLEO), 2006.

  • J.R. Minch, D. J. Townsend, and D.R. Gervais, "Rate Adjustable NRZ-DPSK Modulation Scheme with a Fixed Interferometer," in IEEE LEOS, 2005.

  • D.O. Caplan, M.L. Stevens, and J.J. Carney, "A High-Sensitivity Multi-Channel Single-Interferometer DPSK Receiver," Opt. Express 14, 10984-10989 (2006).

    Article  ADS  Google Scholar 

  • D.O. Caplan, M.L. Stevens, and J.J. Carney, "High-Sensitivity Demodulation of Multiple-Data-Rate WDM-DPSK Signals using a Single Interferometer," in Optical Fiber Conference (OFC), 2007.

  • K. Yonenaga and K. Hagimoto, "10-Git/s × four-channel WDM transmission experiment over 2400-km DSF using optical DPSK direct detection scheme," in Optical Fiber Conference (OFC), 1997.

  • A.H. Gnauck, G. Raybon, S. Chandrasekhar, J. Leuthold, C. Doerr, L. Stulz, A. Agarwal, S. Banerjee, D. Grosz, S. Hunsche, A. Kung, A. Marhelyuk, D. Maywar, M. Movassaghi, X. Liu, C. Xu, X. Wei, and D.M. Gill, "2.5 Tb/s (64 × 42.7 Gb/s) transmission over 40 × 100 km NZDSF using RZ-DPSK format and all-Raman-amplified spans," in Optical Fiber Conference (OFC), 2002.

  • J.-X. Cai, D.G. Foursa, C.R. Davidson, Y. Cai, G. Domagala, H. Li, L. Liu, W. Patterson, A. Pilipetskii, M. Nissov, and N. Bergano, "A DWDM Demonstration of 3.73 Tb/s over 11,000 km using 373 RZ-DPSK Channels at 10 Gb/s," in Optical Fiber Conference (OFC): Paper PD22-1, 2003.

  • C. Rasmussen, T. Fjelde, J. Bennike, F. Liu, S. Dey, B. Mikkelsen, P. Mamyshev, P. Serbe, P. van der Wagt, Y. Akasaka, D. Harris, D. Gapontsev, V. Ivshin, and P. Reeves-Hall, "DWDM 40G transmission over trans-Pacific distance (10 000 km) using CSRZ-DPSK, enhanced FEC and all-Raman amplified 100 km Ultrawave fiber spans," in Optical Fiber Conference (OFC): Paper PD18-1, 2003.

  • B. Zhu, L. E. Nelson, S. Stulz, A.H. Gnauck, C. Doerr, J. Leuthold, L. Gruner-Nielsen, M.O. Pedersen, J. Kim, R.L. Lingle, Jr., Y. Emori, Y. Ohki, N. Tsukiji, A. Oguri, and S. Namiki, "6.4 Tbit/s (160 × 42.7 Gb/s) transmission with 0.8 bit/s/Hz spectral efficiency over 32 × 100 km of fiber using CSRZ-DPSK format," in Optical Fiber Conference (OFC): Paper PD19, 2003.

  • M.L. Stevens, "Transmitter pulse issues," private communication, 2004.

  • R.A. Griffin, "Integrated DQPSK Transmitters," in Optical Fiber Conference (OFC), 2005.

  • H. Kim and P.J. Winzer, "Robustness to laser frequency offset in direct-detection DPSK and DQPSK systems," J. Lightwave Technol. 21, 1887-1891 (2003).

    Article  ADS  Google Scholar 

  • G. Bosco and P. Poggiolini, "On the joint effect of receiver impairments on direct-detection DQPSK systems," J. Lightwave Technol. 24, 1323-1333 (2006).

    Article  ADS  Google Scholar 

  • P.J. Winzer and H. Kim, "Degradations in balanced DPSK receivers," IEEE Photon. Technol. Lett. 15, 1282-1284 (2003).

    Article  ADS  Google Scholar 

  • I. Morita and N. Yoshikane, "Merits of DQPSK for Ultrahigh Capacity Transmission," in LEOS, 2005.

  • A. Royset and D.R. Hjelme, "Novel dispersion tolerant optical duobinary transmitter using phase modulator and Bragg grating filter," in ECOC, 1998.

  • Y. Miyamoto, H. Masuda, A. Hirano, S. Kuwahara, Y. Kisaka, H. Kawakami, M. Tomizawa, Y. Tada, and S. Aozasa, "S-band WDM coherent transmission of 40 × 43-Gbit/s CS-RZ DPSK signals over 400 km DSF using hybrid GS-TDFAs/Raman amplifiers," Electron. Lett. 39, 1569-1570 (2002).

    Article  Google Scholar 

  • D. Penninckx, H. Bissessur, P. Brindel, E. Gohin, and F. Bakhti, "Optical differential phase shift keying (DPSK) direct detection considered as a duobinary signal," in ECOC, 2001.

  • Y. Miyamoto, A. Hirano, S. Kuwahara, M. Tomizawa, and Y. Tada, "Novel modulation and detection for bandwidth-reduced RZ formats using duobinary-mode splitting in wideband PSK/ASK conversion," J. Lightwave Technol. 20, 2067-2078 (2002).

    Article  ADS  Google Scholar 

  • L. Moller, C. Xie, R. Ryf, L. Xiang, and X. Wei, "10 Gb/s duobinary receiver with a record sensitivity of 88 photons per bit," presented at Optical Fiber Conference (OFC), 2004.

  • L.G. Kazovsky and D.A. Atlas., "PSK synchronous heterodyne and homodyne experiments using optical phase-locked loops," presented at Optical Fiber Conference (OFC), 1990.

  • L.G. Kazovsky and D.A. Atlas, "A 1320-nm Experimental Optical Phase-Locked Loop: Performance Investigation and PSK Homodyne Experiments at 140 Mb/s and 2 Gb/s," J. Lightwave Technol. 8, 1414-1425 (1990).

    Article  ADS  Google Scholar 

  • F.T. Herzog, "An optical phase locked loop for coherent space communications," Swiss Federal Institute of Technology, 2006.

  • L.G. Kazovsky, S. Benedetto, and A. Willner, Optical Fiber Communication Systems (Norwood, MA: Artech House, Inc., 1996).

  • B. Wandernoth, "5 photon/bit low complexity 2 Mbit/s PSK transmission breadboard experiment with homodyne receiver applying synchronization bits and convolutional coding," Proc. Eur. Conf. Opt. Commun. (ECOC), 1, 59-62 (1994).

    Google Scholar 

  • R. Lange and B. Smutny, "Highly-Coherent Optical Terminal Design Status and outlook," in LEOS, 2005.

  • J.H. Sinsky, A. Adamiecki, A.H. Gnauck, C.A. Burrus, J. Leuthold, and O. Wohlgemuth, "RZ-DPSK Transmission Using a 42.7-Gb/s Integrated Balanced Optical Front End With Record Sensitivity," J. Lightwave Technol. 22, (2004).

  • S.B. Alexander, R. Barry, D.M. Castagnozzi, V.W.S. Chan, D.M. Hodsdon, L.L. Jeromin, J.E. Kaufmann, D.M. Materna, R.J. Parr, M.L. Stevens, and D.W. White, "4-ary FSK coherent optical communication system," Electron. Lett. 26, 1346-1348 (1990).

    Article  ADS  Google Scholar 

  • M.L. Stevens, D.M. Boroson, and J.E. Kaufmann, "A near-optimum discriminator demodulator for binary FSK with wide tone spacing," IEEE Microwave and Guided Wave Lett. 3, 227-229 (1993).

    Article  Google Scholar 

  • R. Noe, et. al., "Optical FSK transmission with pattern independent 119 photoelectrons/bit receiver sensitivity with endless polarization control," Electron. Lett. 25, 757-758 (1989).

    Article  Google Scholar 

  • B.S. Robinson "Semiconductor-based all-optical switching for optical time-division multiplexed networks," Thesis, MIT, 2003.

  • J.M. Kahn, "1 Gbit/s PSK homodyne transmission system using phase-locked semiconduc-tor lasers," IEEE Photon. Technol. Lett. 1, 340-342 (1989).

    Article  ADS  Google Scholar 

  • S. Norimatsu, K. Iwashita, and K. Noguchi, "10 Gbit/s optical PSK homodyne transmission experiments using external cavity DFB LDs," Electron. Lett. 26, 648-649 (1990).

    Article  Google Scholar 

  • S. Norimatsu, K. Iwashita, and K. Sato, "PSK optical homodyne detection using external cavity laser diodes in Costas loop," IEEE Photon. Technol. Lett. 2, 374-376 (1990).

    Article  ADS  Google Scholar 

  • B. Zhu, L. Leng, L. E. Nelson, L. Gruner-Nielsen, Y. Qian, J. Bromage, S. Stulz, S. Kado, Y. Emori, S. Namiki, P. Gaarde, A. Judy, B. Palsdottir, and R.L. Lingle, Jr., "3.2 Tb/s (80 × 42.7 Gb/s) transmission over 20 × 100km of nonzero dispersion fiber with simultaneous C + L-band dispersion compensation," in Optical Fiber Conference (OFC), 2002.

  • J.M. Ross, S. I. Green, and J. Brand, "Short-pulse optical communication experiments," Proc. IEEE 58, (1970).

  • J.R. Lesh, J. Katz, H.H. Tan, and D. Zwillinger, "2.5 bit/detected photon demonstration program: description, analysis, and phase 1 results," Jet Propulsion Laboratory, Pasadena, CA 42-66, Dec. 1981.

  • J.R. Lesh, "Capacity Limit of the Noiseless, Energy-Efficient Optical PPM Channel," IEEE Trans. Comm. 31, 546-548 (1983).

    Article  ADS  Google Scholar 

  • A.J. Phillips, R.A. Cryan, and J.M. Senior, "An optically preamplified intersatellite PPM receiver employing maximum likelihood detection," IEEE Photon. Technol. Lett. 8, 691-693, 1996.

    Article  ADS  Google Scholar 

  • D.O. Caplan, P.W. Juodawlkis, J.J. Plant, and M.L. Stevens, "Performance of high-sensitivity OOK, PPM, and DPSK communications using high-power slab-coupled optical waveguide amplifier (SCOWA) based transmitters," in Optical Fiber Conference (OFC), 2006.

  • C. Chen and C.S. Gardner, "Performance of PLL Synchronized Optical PPM Communication Systems," IEEE Trans. Comm. COM-34, 988-994 (1986).

    ADS  Google Scholar 

  • F. Nekoogar,Ultra-Wideband Communications: Fundamentals and Applications (Upper Saddle River: Prentice Hall, 2005).

  • M.L. Stevens, "Estimation of M-PPM Spectra for Pseudo-Random Bit Sequences." private communication, 2006.

  • B.S. Robinson, S.A. Hamilton, and E.P. Ippen, "Demultiplexing of 80 Gbit/s pulse-position modulated data with an ultrafast nonlinear interferometer," IEEE Photon. Technol. Lett. 14, 2002.

  • R.S. Vodhanel, J.L. Gimlett, N.K. Cheung, and S. Tsuji, "FSK Heterodyne Transmission Experiments at 560 Mbit/s and 1 Gbit/s," J. Lightwave Technol. LT-5, 461-468 (1987).

    ADS  Google Scholar 

  • A.R. Chraplyvy, R.W. Tkach, A.H. Gnauck, and R.M. Derosier, "8 Gbit/s FSK modulation of DFB lasers with optical demodulation," Electron. Lett. 25, 319-321 (1989).

    Article  Google Scholar 

  • B. Glance, et. al., "Densely spaced FDM optical coherent system with near quantum-limited sensitivity and computer controlled random access channel selection," in Optical Fiber Conference (OFC): Paper PD11, 1989.

  • M.L. Stevens, B. R. Hemenway, and S.B. Alexander, "Simultaneous TDM/FDM digital optical transmission with polarization-diversity heterodyne detection," Microwave Symposium Digest, 1, 171-173 (1994).

  • R. Gross and R. Olshansky, "Multichannel Coherent FSK Experiments Using Subcarrier Multiplexing Techniques," J. Lightwave Technol. 8, 406-415 (1990).

    Article  ADS  Google Scholar 

  • H. Gross, M. Schmidt, R. Olshansky, and V. Lanzisera, "Coherent Transmission of 60 FM-SCM Video Channels," Photonics Technol. Lett. 2, 288-290 (1990).

    Article  ADS  Google Scholar 

  • S. Bendetto, R. Gaudino, and P. Poggiolini, "Direct detection of optical digital transmission based on polarization shift keying modulation," IEEE Sel. Areas Commun. 13, 531-542 (1995).

    Article  Google Scholar 

  • E. Hu, K. Wong, M. Marhic, L.G. Kazovsky, K. Shimizu, and N. Nikuchi, "4-Level Direct-Detection Polarization Shift-Keying (DD-PolSK) System with Phase Modulators," in Optical Fiber Conference (OFC), 2003.

  • M.M. Matalgah and R.M. Radaydeh, "Hybrid Frequency-Polarization Shift-Keying Modulation for Optical Transmission," J. Lightwave Technol. 23, 1152-1162 (2005).

    Article  ADS  Google Scholar 

  • M. Nazarathy and E. Simony, "Generalized Stokes Parameters-Shift Keying: A New Perspective on Optimal Detection Over Electrical and Optical Vector Incoherent Channels," IEEE Trans. Comm. 54, 499-509 (2006).

    Article  Google Scholar 

  • M. Nazarathy and E. Simony, "Stokes Space Optimal Detection of Multidifferential Phase and Polarization Shift Keying Modulation," J. Lightwave Technol. 24, 1978-1988 (2006).

    Article  ADS  Google Scholar 

  • R. Zhang and G.S. La Rue, "Clock and data recovery circuits with fast acquisition and low jitter," presented at IEEE Workshop on Microelectronics and Electron Devices, 2004.

  • N.W. Spellmeyer, "Communications performance of a multimode EDFA," IEEE Photon. Technol. Lett. 12, 1337-1339 (2000).

    Article  ADS  Google Scholar 

  • R.H. Kingston, Detection of Optical and Infrared Radiation (New York: Springer-Verlag, 1978).

  • B. Glance, "Polarization independent coherent optical receiver," J. Lightwave Technol. 5, 274-276 (1987).

    ADS  Google Scholar 

  • B.S. Glance, K. Pollock, C.A. Burrus, B.L. Kasper, G. Einstein, and L.W. Stulz, "WDM coherent optical star network," J. Lightwave Technol. 6, 67-72 (1988).

    Article  ADS  Google Scholar 

  • B.S. Glance and M. Kavehrad, "Polarization-insensitive frequency-shift-keying optical heterodyne receiver using discriminator demodulation," J. Lightwave Technol. 6, 1386-1394 (1988).

    Article  ADS  Google Scholar 

  • N. Ohkawa, T. Sugie, and Y. Hayashi, "A highly sensitive balanced receiver for 2.5 Gb/s het-erodyne detection systems," IEEE Photon. Technol. Lett. 3, 375-377 (1991).

    Article  ADS  Google Scholar 

  • B. Wandernoth, "20 photon/bit 565 Mbit/s PSK homodyne receiver using synchronization bits," Electron. Lett. 28, (1992).

  • F.H. Raab, P. Asbeck, S. Cripps, P.B. Kenington, Z.B. Popovic, N. Pothecary, J.F. Sevic, and N.O. Sokal, "RF and Microwave Power Amplifier and Transmitter Technologies-Part 1," High Frequency Electronics, 22-36 (2003).

  • P.W. Juodawlkis, J.J. Plant, R.K. Huang, L.J. Missaggia, and J.P. Donnelly, "High-power 1.5-/spl mu/m InGaAsP-InP slab-coupled optical waveguide amplifier," IEEE Photon. Technol. Lett. 17, (2005).

  • N.W. Spellmeyer, D.O. Caplan, and M.L. Stevens, "Design of a 5-Watt PPM transmitter for the Mars Laser Communications Demonstration," in LEOS, 2005.

  • P. Wysocki, T. Wood, A. Grant, D. Holcomb, K. Chang, M. Santo, L. Braun, and G. Johnson, "High Reliability 49 dB Gain, 13W PM Fiber Amplifier at 1550 nm with 30 dB PER and Record Efficiency," in Optical Fiber Conference (OFC), paper PDP17, 2006.

  • L. Goldberg, J.P. Koplow, and D.A.V. Kliner, "Highly efficient 4-W Yb-doped fiber amplifier pumped by a broad-stripe laser diode," Opt. Lett. 24, 673-675 (1999).

    ADS  Google Scholar 

  • A.N. Curren, J.A. Dayton, Jr., R.W. Palmer, K.J. Long, D.A. Force, C.E. Weeder, Z.A. Zachar, and W.L. Harvey, "The Cassini mission Ka-band TWT," in International Electron Devices Meeting, 1994.

  • D. Morabito, S. Butman, and S. Shambayati, "The Mars Global Surveyor Ka-Band Link Experiment (MGS/KaBLE-II)," in Telecommunications and Mission Operations Progress Report 42-137, Jet Propulsion Laboratory, 1999.

  • I. Haque, "Ka-Band Traveling Wave Tube Amplifier," in IND Technology and Sciency News, Jet Propulsion Laboratory, 2002, pp. 11-14: http://tmot.jpl.nasa.gov/Program_Overview_ Information/IND_Program_News/Issue15.pdf.

  • N.W. Spellmeyer, D.O. Caplan, B.S. Robinson , D. Sandberg, M.L. Stevens, M.M. Willis, D.V. Gapontsev, N.S. Platonov, and A. Yusim, "A High-Efficiency Ytterbium-Doped Fiber Amplifier Designed for Interplanetary Laser Communications," in Optical Fiber Conference (OFC), 2007.

  • R. Loudon, The Quantum Theory of Light (New York: Oxford University Press, Inc., 2000).

  • C.W. Gardiner and P. Zoller, Quantum Noise (New York: Springer Verlag, 2000).

  • J.W. Goodman, Statistical Optics (New York: John Wiley & Sons, Inc., 2000).

  • A. Papoulis, Probability, Random Variables, and Stochastic Processes (New York: McGraw-Hill, Inc., 1984).

  • R. Sobolewski, et. al., "Ultrafast superconducting single-photon optical detectors and their applications," IEEE Trans. Appl Superconduct 13, 1151-1157 (2003).

    Google Scholar 

  • J.K.W. Yang, et. al., "Fabrication development for nanowire GHz-counting-rate single-photon detectors," IEEE Trans. Appl. Superconduct., 2005.

  • B.S. Robinson, "Private communication," 2005.

  • J.H. Shapiro, "Imaging and Optical Communication through Atmospheric Turbulence," in Laser Beam Propagation in the Atmosphere, J.W. Strohbehn, Ed. (Berlin: Springer-Verlag, 1978).

  • R.J. Barron, "Binary shaping for low-duty-cycle communications," in International Symposium on Information Theory (ISIT), 2004.

  • B.S. Robinson, D.O. Caplan, M.L. Stevens, R.J. Barron, E.A. Dauler, and S.A. Hamilton, "1.5-photons/bit Photon-Counting Optical Communications Using Geiger-Mode Avalanche Photodiodes," in IEEE LEOS Summer Topical Meetings, 2005.

  • J.B. Johnson, "Thermal agitation of electricity in conductors," Phys. Rev. 32, 97-109 (1928).

    Article  ADS  Google Scholar 

  • H. Nyquist, "Thermal agitation of electric charge in conductors," Phys. Rev. 32, 110-113 (1928).

    Article  ADS  Google Scholar 

  • B. M. Oliver, "Thermal and quantum noise," presented at Proc. IEEE, 1965.

  • A. Yariv, Optical Electronics in Modern Communications, 5th Ed. (New York: Oxford Un. Press, 1997).

  • S.G. Lambert and W.L. Casey, Laser Communications in Space (Boston: Artech House, 1995).

  • ITU-R Recommendation PI.372-6: Radio Noise, 1994.

  • K. P. Phillips, "An overview of propagation factors influencing the design of mobile satellite communication systems," Electron. & Commun. Eng. J., (1997).

  • K. Rosfjord, J. Yang, E. Dauler, A. Kerman, V. Anant, B. Voronov, G. Gol'tsman, and K. Berggren, "Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating," Opt. Express, 14, 527-534 (2006).

    Google Scholar 

  • W.R. Leeb, "Degradation of signal to noise ratio in optical free space data links due to background illumination," Appl. Opt. 28, 3443-3449 (1989).

    ADS  Google Scholar 

  • F.D. Teodoro, J.P. Koplow, and S.W. Moore, "Diffraction limited, 300-kW peak power pulses from a coiled multimode fiber amplifier," Opt. Lett., (2002).

  • V.W.S. Chan, "Space coherent optical communication systems-An introduction," J. Lightwave Technol. 5, 633-637 (1987).

    ADS  Google Scholar 

  • S.B. Alexander, E.S. Kintzer, and J.C. Livas, "A Gbps, 1 Watt Free-space Coherent Optical Communication System," in LEOS, 1992.

  • A. Biswas, H. Hemmati, and J.R. Lesh, "High data-rate laser transmitters for free space laser communications," in Photonics West, 1999.

  • E. Rochat, R. Dandliker, K. Haroud, R.H. Czichy, U. Roth, D. Costantini, and R. Holzner, "Fiber Amplifiers for Coherent Space Communication," IEEE Sel. Top. Quantum Electron., 7, 64-81 (2001).

  • R. Lange and B. Smutny, "BPSK Laser Communication Terminals to be verified in space," in Milcom, 2004, pp. 441-444.

  • R. Lange and B. Smutny, "Optical inter-satellite links based on homodyne BPSK modulation: Heritage, status and outlook," in Proc. SPIE, (Free-Space Laser Communication Technologies XVII), 2005.

  • T. Shinagawa, "Detailed investigation on reliability of wavelength-monitor-integrated fixed and tunable DFB laser diode modules," J. Lightwave Technol. 23, 1126-1136 (2005).

    Article  ADS  Google Scholar 

  • T. Ikegami and Y. Suematsu, "Resonance-like characteristics of the direct modulation of a junction laser," presented at Proc. IEEE, 1967.

  • L.A. Coldren and S.W. Corzine,Diode Lasers and Photonic Integrated Circuits (John Wiley & Sons, Inc., 1995).

  • D.A. Ackerman, "Laser diodes for CATV," in IEEE LEOS, 1995.

  • M.R. Phillips, et. al., "112 channel split-band WDM lightwave CATV system," IEEE Photon. Technol. Lett. 4, 790-792 (1992).

    Google Scholar 

  • G.P. Agrawal, Fiber-Optic Communication Systems (New York: John Wiley & Sons, 1992).

  • J. Piprek and J.E. Bowers, "Analog modulation of semiconductor lasers," inRF Photonic Technology in Optical Fiber Links, W.S. C. Chang, Ed. (Cambridge Univ. Press, 2002).

  • R.S. Vodhanel, A. F. Elrefaie, M. Z. Iqbal, R. E. Wagner, J.L. Gimlett, and S. Tsuji, "Performance of directly modulated DFB lasers in 10-Gb/s ASK, FSK, and DPSK lightwave systems," J. Lightwave Technol. 8, 1379-1386 (1990).

    Article  ADS  Google Scholar 

  • J. Zhang, N. Chi, P. V. Holm-Nielsen, C. Pueucheret, and P. Jeppesen, "An Optical FSK Transmitter Based on an Integrated DFB Laser-EA Modulator and Its Application in Optical Labeling," IEEE Photon. Technol. Lett. 15, 984-986 (2003).

    Google Scholar 

  • F. Koyama and K. Iga, "Frequency chirping in external modulators," J. Lightwave Technol. 6, 87-93 (1988).

    Article  ADS  Google Scholar 

  • M. Kuznetsov, J. Stone, and L.W. Stulz, "Time- and frequency-resolved measurements of frequency-modulation and switching of a tunable semiconductor laser," Appl. Phys. Lett. 59, 2492-2494 (1991).

    Article  ADS  Google Scholar 

  • M. Kuznetsov and D.O. Caplan, "Time-frequency analysis of optical communication signals and the effects of second and third order dispersion," in Conference on Lasers and Electro-Optics (CLEO), 2000.

  • R.A. Linke, "Modulation Induced Transient Chirping in Single Frequency Lasers," IEEE J. Quantum Electron. QE-21, 593-597 (1985).

    Article  ADS  Google Scholar 

  • P.A. Morton, G.E. Shtengel, L.D. Tzeng, R.D. Yadvish, T. Tanbun-Ek, and R.A. Logan, "38.5 km error free transmission at 10 Gbit/s in standard fibre using a low chirp, spectrally filtered, directly modulated 1.55 μm DFB laser," Electron. Lett. 33, 310-311 (1997).

    Article  MathSciNet  Google Scholar 

  • D.R. Hjelme and A. Royset, "RZ versus NRZ in space communication system using direct current modulated transmitter and optically pre-amplifed receiver with ultra-narrow optical filter," in LEOS, San Francisco, 1999.

  • M.M. Strasser, P.J. Winzer, M. Pfennigbauer, and W.R. Leeb, "Significance of Chirp-Parameter for Direct Detection Free-Space Laser Communication," in SPIE, 2001.

  • P. Corvini and T. Koch, "Computer simulation of high-bit-rate optical fiber transmission using single-frequency lasers," J. Lightwave Technol. 5, 1591-1595 (1987).

    ADS  Google Scholar 

  • D. Mahgerefteh, P.S. Cho, J. Goldhar, and H. I. Mandelberg, "Penalty-free propagation over 600 km of nondispersionshifted fiber at 2.5 Gb/s using a directly laser modulated transmitter," in Conference on Lasers and Electro-Optics (CLEO), 1999.

  • Y. Matsui, D. Mahgerefteh, X. Zheng, C. Liao, Z.F. Fan, K. McCallion, and P. Tayebati, "Chirp-Managed Directly Modulated Laser (CML)," Photon. Technol. Lett. 18, 385-386 (2006).

    Google Scholar 

  • S. Chandrasekbar, C.R. Doerr, L.L. Buhl, Y. Matsui, D. Mahgerefteh, X. Zheng, K. McCallion, Z. Fan, and P. Tayebati, "Repeaterless Transmission With Negative Penalty Over 285 km at 10 Gb/s Using a Chirp Managed Laser," Photon. Technol. Lett. 17, 2454-2457 (2005).

    Google Scholar 

  • S. Chandrasekbar, A.H. Gnauck, G. Raybon, L.L. Buhl, D. Mahgerefteh, X. Zheng, Y. Matsui, K. McCallion, Z. Fan, and P. Tayebati, "Chirp-Managed Laser and MLSE-RX Enables Transmission Over 1200 km at 1550 nm in a DWDM Environment in NZDSF at 10 Gb/s Without Any Optical Dispersion Compensation " Photonics Technol. Lett. 18, 1560-1562 (2006).

    Google Scholar 

  • M. Ito and T. Kimura, "Stationary and transient thermal properties of semiconductor laser diodes," IEEE J. Quantum Electron. 17, 787-795 (1981).

    Article  ADS  Google Scholar 

  • H. Shalom, A. Zadok, M. Tur, P.J. Legg, W.D. Cornwell, and I. Andonovic, "On the Various Time Constants of Wavelength Changes of a DFB Laser Under Direct Modulation," IEEE J. Quantum Electron. 34, 1816-1822 (1998).

    Article  ADS  Google Scholar 

  • A. Ma, J.C. Cartledge, and H.E. Lassen, "Performance implications of the thermal-induced frequency drift in fast wavelength switched systems with heterodyne detection," J. Lightwave Technol. 14, 1090-1096 (1996).

    Article  ADS  Google Scholar 

  • D.O. Caplan, G.S. Kanter, and P. Kumar, "Characterization of dynamic optical nonlinearities by continuous time-resolved Z-Scan," Opt. Lett. 21, 1342-1344 (1996).

    ADS  Google Scholar 

  • A. A. Saavedra, R. Passy, and J.P. von der Weid, "Thermal drift in wavelength-switching DFB and DBR lasers," Electron. Lett. 33, 780-781 (1997).

    Article  Google Scholar 

  • C.R. Giles, T. Erdogan, and V. Mizrahi, "Simultaneous wavelength-stabilization of 980-nm pump lasers," IEEE Photonics Technol. Lett. 6, (1994).

  • S. Mohrdiek, T. Plisk, and C. Harder, "Coolerless operation of 980 nm pump modules," in Optical Fiber Conference (OFC), 2001.

  • J.-L. Archambault and S.G. Grubb, "Fiber Gratings in Lasers and Amplifiers," J. Lightwave Technol. 15, 1378-1390 (1997).

    Article  ADS  Google Scholar 

  • B. R. Hemenway and M.L. Stevens, "Simultaneous TDM/FDM Using Rapidly-tunable Transmitters and Receivers For Multi-access Optical Networks," presented at IEEE/LEOS Integrated Optoelectronics Proceedings, 1994.

  • C.H. Henry, "Theory of the linewidth of semiconductor lasers," IEEE J. Quantum Electron. QE-18, 259-264 (1982).

    Article  ADS  Google Scholar 

  • K. Kojima, K. Kyuma, and T. Nakayama, "Analysis of the spectral linewidth of distributed feedback laser diodes," J. Lightwave Technol. 3, 1048-1055 (1985).

    Google Scholar 

  • H. Nakano, S. Sasaki, S. Tsuji, N. Chinone, and M. Maeda, "Comparison of optical reflection tolerance between conventional and ?/4-shifted DFB lasers in a 2.4 Gbit/s system," Electron. Lett. 4, 1049-1051 (1988).

    Article  Google Scholar 

  • G. Jacobsen, "Performance of DPSK and CPFSK Systems with Significant Post-Detection Filtering," J. Lightwave Technol. 11, (1993).

  • H. Nasu, T. Mukaihara, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, "25-GHz-spacing wavelength-monitor integrated DFB laser module for DWDM applications," Photon. Technol. Lett. 15, 293-295 (2003).

    Google Scholar 

  • D.O. Caplan, "Multi-channel DPSK Receiver," in US Pat. Appl. 11/022,344, 2004.

  • D.O. Caplan, "Polarization independent optical interferometers," in US Pat. Appl., 2004.

  • D.O. Caplan, "Reconfigurable Polarization Independent Interferometers and Methods of Stabilization," in US Pat. Appl. 11/318,255, 2005.

  • J.B. Abshire, et. al., "The Geoscience Laser Altimeter System (GLAS) for the ICESat mission," presented at Conference on Lasers and Electro-Optics (CLEO), 2000.

  • M. Albota, et. al. , "Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays," MIT Lincoln Lab. J. 13, 351-370 (2002).

    Google Scholar 

  • W.T. Roberts, "Cavity-dumped communication laser design," 42-152, Feb. 2003.

  • X. Sun, et. al., "Cloud and aerosol lidar channel design and performance of the Geoscience Laser Altimeter System on the ICESat mission," presented at Conference on Lasers and Electro-Optics (CLEO), 2004.

  • X. Sun, et. al., "Design and performance measurement of the mercury laser altimeter," in Conference on Lasers and Electro-Optics (CLEO), 2004.

  • M. Aoki, M. Suzuki, H. Sano, T. Kawano, T. Ido, T. Taniwatari, K. Uomi, and A. Takai, "InGaAs/InGaAsP MQW electroabsorption modulator integrated with a DFB laser fabricated by band-gap energy control selective area MOCVD," IEEE J. Quantum Electron. 29, 2088-2096 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  • W.S.C. Chang, "Multiple quantum well electroabsorption modulators for RF photonic links," inRF Photonic Technology in Optical Fiber Links, W.S.C. Chang, Ed. (Cambridge Univ. Press, 2002).

  • G. Raybon, U. Koren, M.G. Young, B.I. Miller, M. Chien, T.H. Wood, and H. M. Presby, "Low chirp transmission at 5.0 Gbit/s using an integrated DBR laser-modulator transmitter," Electron. Lett. 30, 1330-1331 (1994).

    Article  ADS  Google Scholar 

  • Y. Akage, K. Kawano, S. Oku, R. Iga, H. Okamoto, Y. Miyamoto, and H. Takeuchi, "Wide bandwidth of over 50 GHz travelling-wave electrode electroabsorption modulator integrated DFB lasers," Electron. Lett. 37, 299-300 (2001).

    Article  Google Scholar 

  • A.H. Gnauck, S.K. Korotky, J.J. Veselka, J. Nagel, C.T. Kemmerer, W. J. Minford, and D. T. Moser, "Dispersion penalty reduction using an optical modulator with adjustable chirp," IEEE Photon. Technol. Lett. 3, 916-918 (1991).

    Google Scholar 

  • A.H. Gnauck, S.K. Korotky, and J.E. Zucker, "Tunable chirp, lightwave modulator for dispersion compensation," in US Pat. 5,303,079,. USA, 1992.

  • R.M. Jopson and A.H. Gnauck, "Dispersion compensation for optical fiber systems," IEEE Communi. Mag., 33, 96-102 (1995).

    Google Scholar 

  • L. Zehnder, "Ein neuer Interferenzrefractor," Z. Instrkde 11, 275-285 (1891).

    Google Scholar 

  • L. Mach, "Uber einer Interferenzrefractor," Z. Instrkde 12, 89-93 (1892).

    Google Scholar 

  • R.C. Alferness, "Waveguide Electrooptic Modulators,"IEEE Trans. Microwave Theory Technol., 82, 1121-1137 (1982).

  • R.C. Alferness, "Corrections to "Waveguide Electrooptic Modulators"," IEEE Trans. Microwave Theory Technol. 83, 315 (1983).

    Google Scholar 

  • R.C. Alferness, L.L. Buhl, J.L. Jackel, S. P. Lyman, and V. Ramaswamy, "Fabrication method for LiNbO3 and LiTaO3 integrated optics devices," in U.S. Pat. 4,439,265, USA, 1984.

  • L. Thylen, "Integrated optics in LiNbO3: recent developments in devices for telecommunication," J. Lightwave Technol. 6, 847- 861 (1988).

    Article  ADS  Google Scholar 

  • K. Noguchi, O. Mitomi, and H. Miyazawa, "Low-voltage and broadband Ti:LiNbO3 modulators operating in the millimeter wavelength region," in Optical Fiber Conference (OFC), 1996.

  • K. Noguchi, O. Mitomi, and H. Miyazawa, "Millimeter-wave Ti:LiNbO3 optical modulators," J. Lightwave Technol. 16, 615-619 (1998).

    Article  ADS  Google Scholar 

  • G.E. Betts, "LiNbO3 external modulators and their use in high performance analog links," in RF Photonic Technology in Optical Fiber Links, W.S. C. Chang, Ed. (Cambridge Univ. Press, 2002).

  • M.M. Howerton and W.K. Burns, "Broadband traveling wave modulators in LiNbO3," inRF Photonic Technology in Optical Fiber Links, W.S. C. Chang, Ed. (Cambridge Univ. Press, 2002).

  • O. Leclerc, et. al., "40 Gbit/s polarization-independent, push-pull InP Mach-Zehnder modulator for all-optical regeneration," presented at Optical Fiber Conference (OFC), PD35, 1999.

  • O. Leclerc, B. Dany, D. Rouvillain, P. Brindel, E. Desurvire, C. Duchet, A. Shen, F. Devaux, E. Coquelin, M. Goix, S. Bouchoule, L. Fleury, and P. Nouchi, "Simultaneously regenerated 4x40 Gbit/s dense WDM transmission over 10000 km using single 40 GHz InP Mach-Zehnder modulator," Electron. Lett. 36, 1574-1575 (2000).

    Article  Google Scholar 

  • B. Li, et. al. , "SiGe/Si Mach-Zehnder Interferometer Modulator based on the Plasma Dispersion Effect," Appl. Phys. Lett. 74, (1999).

  • L. Liao, D. Samara-Rubio, M. Morse, A. Liu, and D. Hodge, "High speed silicon Mach-Zehnder modulator," Opt. Express, 13, (2005).

  • G.L. Li and P.K.L. Yu, "Optical intensity modulators for digital and analog applications," J. Lightwave Technol. 21, 2010-2030 (2003).

    Article  ADS  Google Scholar 

  • J.P. Sokoloff, P.R. Prucnal, I. Glesk, and M. Kane, "A terahertz optical asymmetric demultiplexer (TOAD)," IEEE Photon. Technol. Lett.5, (1993).

  • T. Durhuus, C. Joergensen, B. Mikkelsen, and K.E. Stubkjaer, "Penalty free all-optical wavelength conversion by SOA's in Mach-Zehnder configuration," in ECOC'93. Montreux, 1993.

  • B. Mikkelsen, et. al., "20 Gbit/s polarisation insensitive wavelength conversion in semiconductor optical amplifiers," in ECOC'93. Montreux, 1993.

  • N. Patel, et. al., "40-Gb/s demultiplexing using an ultrafast nonlinear interferometer (UNI)," IEEE Photon. Technol. Lett. 8, 1695-1697 (1996).

    Google Scholar 

  • N.S. Patel, K. L. Hall, and K.A. Rauschenbach, "Interferometric all optical switches for ultrafast signal processing," Appl. Opt. 37, 2831-2842 (1998).

    ADS  Google Scholar 

  • C. Janz, F. Poingt, F. Pommereau, W. Grieshaber, F. Gaborit, D. Leclerc, I. Guillemot, and M. Renaud, "All-active Dual Order Mode (DOMO) Mach-Zehnder wavelength converter for 10 Gb/s operation," Electron. Lett. 35, 1862 (1999).

    Article  Google Scholar 

  • B.S. Robinson, S.A. Hamilton, and E.P. Ippen, "Demultiplexing of 80 Gbit/s pulse-position modulated data with an ultrafast nonlinear interferometer," IEEE Photon. Technol. Lett. 14, 2002.

  • G. Raybon, Y. Su, J. Leuthold, R.-J. Essiambre, T. Her, C. Joergensen, P. Steinvurzel, and K. D. K. Feder, "40 Gbit/s pseudo-linear transmission over one million kilometers," in Optical Fiber Conference (OFC): Paper FD10-1, 2002.

  • J. Leuthold, G. Raybon, Y. Su, R. Essiambre, S. Cabot, J. Jaques, and M. Kauer, "40 Gbit/s transmission and cascaded all-optical wavelength conversion over 1000000 km," Electron. Lett. 38, 890-892 (2002).

    Article  Google Scholar 

  • Y. Su, G. Raybon, R.-J. Essiambre, and T.-H. Her, "All-optical 2R regeneration of 40-Gb/s signal impaired by intrachannel four-wave mixing," Photonics Technol. Lett. 15, 350-352 (2003).

    Google Scholar 

  • J. Nayyer and H. Nagata, "Suppression of thermal drifts of high speed Ti:LiNbO3 optical modulators," IEEE Photon. Technol. Lett. 6, 952-955 (1994).

    Google Scholar 

  • S.K. Korotky and J.J. Veselka, "An RC network analysis of long term Ti:LiNbO3 bias stability," J. Lightwave Technol. 14, 2687-2697 (1996).

    Article  ADS  Google Scholar 

  • A. Waksberg and J. Wood, "An Automatic Optical Bias Control for Laser Modulators," Rev. Sci. Instrum., 43, 1271-1273 (1972).

    Google Scholar 

  • C.T. Mueller and J.G. Coffer, "Temperature-dependent bias drift in proton-exchanged lithium niobate Mach-Zehnder modulators," in Conference on Lasers and Electro-Optics (CLEO), 1999.

  • H. Nagata, "DC drift failure rate estimated on 10 Gb/s x-cut lithium niobate modulators," IEEE Photon. Technol. Lett. 12, 1477-1479 (2000).

    Google Scholar 

  • H. Nagata, N. Papasavvas, and D.R. Maack, "Bias stability of OC48 x-cut lithium-niobate optical modulators: four years of biased aging test results," Photon. Technol. Lett. 15, 42-44 (2003).

    Google Scholar 

  • H. Nagata, G. D. Feke, Y. Li, and W.R. Bosenberg, "DC drift of Z-cut LiNbO3 modulators," IEEE Photon. Technol. Lett. 16, 1655-1657 (2004).

    Google Scholar 

  • H. Nagata, Y. Li, D.R. Maack, and W.R. Bosenberg, "Reliability Estimation From Zero-Failure LiNbO3 Modulator Bias Drift Data," IEEE Photon. Technol. Lett. 16, 1477-1479 (2004).

    Google Scholar 

  • D.O. Caplan, "A technique for measuring and optimizing modulator extinction ratio," in Conference on Lasers and Electro-Optics (CLEO), 2000.

  • N. Kuwata, H. Nishimoto, T. Horimatsu, and T. Touge, "Automatic bias control circuit for Mach-Zehnder modulator," presented at Nat. Meet. Inst. Electon. Comm. Eng., Japan, 1990.

  • A.H. Gnauck and C.R. Giles, "2.5 and 10 Gb/s transmission experiments using a 137 photon/bit erbium-fiber preamplifier receiver," IEEE Photon. Technol. Lett. 4, 80-82 (1992).

    Google Scholar 

  • Q. Jiang and M. Kavehrad, "A Subcarrier-Multiplexed Coherent FSK System Using a Mach-Zehnder Modulator with Automatic Bias Control," IEEE Photon. Technol. Lett. 5, 941-943 (1993).

    Google Scholar 

  • H. Nagata, Y. Li, K. R. Voisine, and W.R. Bosenberg, "Reliability of Nonhermetic Bias-Free LiNbO3 Modulators," IEEE Photon. Technol. Lett. 16, (2004).

  • L. Fenghai, C.J. Rasmussen, and R.J.S. Pedersen, "Experimental verification of a new model describing the influence of incomplete signal extinction ratio on the sensitivity degradation due to multiple interferometric crosstalk," IEEE Photon. Technol. Lett. 11, 137 (1999).

    Google Scholar 

  • Z. Li, Y. He, B.F. Jorgensen, and R.J. Pedersen, "Extinction ratio effect for high-speed optical fiber transmissions," presented at Int. Conf. on Comm. Tech. Proc. (ICCT '98), 1998.

  • M. Pauer and P.J. Winzer, "Impact of Extinction Ratio on Return-to-Zero Coding Gain in Optical Noise Limited Receivers," IEEE Photon. Technol. Lett. 15, 879 - 881 (2003).

    Google Scholar 

  • H. Kim and A.H. Gnauck, "Chirp characteristics of dual-drive mach-zehnder modulator with a finite dc extinction ratio," IEEE Photonics Tech. Lett., 14, (2002).

  • T. Kawanishi, T. Sakamoto, M. Tsuchiya, and M. Izutsu, "70 dB extinction-ratio LiNbO3 optical intensity modulator for two-tone lightwave generation," in Optical Fiber Conference (OFC), 2006.

  • O. Mitomi, K. Noguchi, and H. Miyazawa, "Broadband and low driving-voltage LiNbO3, optical modulators," IEE Proc. Optoelectron. 145, 360-364 (1998).

  • "Measuring extinction ratio of optical transmitters," Hewlett Packard App. Note, 1550-8, 1998.

  • P.O. Andersson and K. Akermark, "Accurate-optical extinction ratio measurement," IEEE Photon. Technol. Lett. 6, 1356-1358 (1994).

    Google Scholar 

  • C.R. Yang, W.-Y. Hwang, H. Park, H.H. Hong, and S.G. Han, "Off-level sampling method for bias stabilisation of electro-optic Mach-Zehnder modulator," Electron. Lett. 35, 590-591 (1999).

    Article  Google Scholar 

  • R.C. Alferness, S.K. Korotky, and E. Marcatili, "Velocity-matching techniques for integrated optic traveling wave switch/modulators," IEEE J. Quantum Electron. 20, 301-309 (1984).

    Article  ADS  Google Scholar 

  • R.C. Alferness, " Traveling wave, electrooptic devices with effective velocity matching " in US Pat. 4,448,479, 1984.

  • R.C. Alferness, "Guided-wave devices for optical communication," IEEE J. Quantum Electron. 17, 946-959 (1981).

    Article  ADS  Google Scholar 

  • N. Henmi, T. Saito, and T. Ishida, "Prechirp technique as a linear dispersion compensation for ultrahigh-speed long-span intensity modulation direct detection optical communication systems," J. Lightwave Technol. 12, 1706-1719 (1994).

    Article  ADS  Google Scholar 

  • S.K. Kim, O. Mizuhara, Y.K. Park, L.A. Tzeng, Y.S. Kim, and J. Jeong, "Theoretical and experimental studies of 10 Gb/s transmission performance using 1.55 μ m LiNbO3 - based transmitters using adjustable extinction ratio and chirp," J. Lightwave Technol. 17, 1320-1325 (1999).

    Article  ADS  Google Scholar 

  • J.J. Veselka, S.K. Korotky, P. V. Mamyshev, A.H. Gnauck, G. Raybon, and N. M. Froberg, "A Soliton Transmitter Using a CW Laser and an NRZ Driven Mach-Zehnder Modulator," IEEE Photon. Technol. Lett. 8, 950-952 (1996).

    Google Scholar 

  • N.M. Froberg, A.H. Gnauck, G. Raybon, and J.J. Veselka, "Method and Apparatus for Generating Data Encoded Pulses in Return-to-Zero Format," in US Pat. 5,625,722, 1997.

  • B. Zhu, L. Leng, A.H. Gnauck, M.O. Pedersen, D. Peckham, L.E. Nelson, S. Stulz, S. Kado, L. Gruner-Nielsen, R.L. Lingle, Jr., S. Knudsen, J. Leuthold, C. Doerr, S. Chandrasekhar, G. Baynham, P. Gaarde, Y. Emori, and S. Namiki, "Transmission of 3.2 Tb/s (80 x 42.7 Gb/s) over 5200 km of UltraWaveTM fiber with 100-km dispersion-managed spans using RZ-DPSK format," in ECOC: Paper PD4.2, 2002.

  • P.J. Winzer, "Optical transmitters, receivers, and noise," in Wiley Encyclopedia of Telecommunications, J.G. Proakis, Ed. (New York: Wiley, 2002), pp. 1824-1840.

  • M.L. Dennis, W. I. Kaechele, W.K. Burns, T. F. Carruthers, and I.N. Duling, "Photonic Serial-Parallel Conversion of High-Speed OTDM Data," IEEE Photon. Technol. Lett. 12, 1561-1563 (2000).

    Google Scholar 

  • R.C. Williamson, J.L. Wasserman, G.E. Betts, and J.C. Twichell, "Sinusoidal Drives for Optical Time Demultiplexers," IEEE Trans. Microwave Theory and Technol. 49, 1945-1949 (2001).

    Google Scholar 

  • V.W.S. Chan, "Optical satellite networks," J. Lightwave Technol. 21, 2811-2827 (2003).

    Article  ADS  Google Scholar 

  • M.J.F. Digonnet, Rare Earth Doped Fiber Lasers and Amplifiers (New York: Marcel Dekker, 1993).

  • C.R. Giles and T. Li, "Optical amplifiers transform long-distance lightwave telecommunications," Proc. IEEE, 84, 870-883 (1996).

    Google Scholar 

  • J.-M.P. Delavaux and J.A. Nagel, "Multi-Stage Erbium-Doped Fiber Amplifier Designs," J. Lightwave Technol. 13, 703-720 (1995).

    Article  ADS  Google Scholar 

  • L. Boivin, M.C. Nuss, J. Shah, D.A.B. Miller, and H.A. Haus, "Receiver sensitivity improvement by impulsive coding," Photon. Technol. Lett. 9, 684-686 (1997).

    Google Scholar 

  • L. Boivin and G.J. Pendock, "Receiver sensitivity for optically amplified RZ signals with arbitrary duty cycle," presented at Optic. Amplifiers and their Applications (OAA'99), 1999.

  • P.J. Winzer and A. Kalmar, "Sensitivity enhancement of optical receivers by impulsive coding," J. Lightwave Technol. 8, 171-177 (1999).

    Article  ADS  Google Scholar 

  • W.R. Leeb, P.J. Winzer, and M. Pauer, "The potential of return-to-zero coding in optically amplified lasercom systems," in LEOS, 1999, pp. 224-225.

  • M. Pauer, P.J. Winzer, and W.R. Leeb, "Booster EDFAs in RZ-coded links: Are they average-power limited?," in Proc. SPIE, (Free-Space Laser Communication Technologies XIII), vol. 4272, 118-127, San Jose, USA, 2001.

  • P.J. Winzer, A. Kalmar, and W.R. Leeb, "Role of amplied spontaneous emission in optical free-space communication links with optical amplication - impact on isolation and data transmission; utilization for pointing, acquisition, and tracking," in Proc. SPIE (Free-Space Laser Communication Technologies XI), vol. 3615, 104-114, San Jose, CA, USA, 1999.

  • D.J. DiGiovanni and C.R. Giles, "Multistage optical amplifiers " in US Pat. 5115338, 1992.

  • R.I. Laming, M.N. Zervas, and D.N. Payne, "Erbium-Doped Fiber Amplifier with 54 dB Gain and 3.1 dB Noise Figure," IEEE Photon. Technol. Lett. 4, 1345-1347 (1992).

    Google Scholar 

  • T. Pliska, S. Mohrdiek, and C. Harder, "Power stabilisation of uncooled 980 nm pump laser modules from 10 to 100C," Electron. Lett. 37, 33-34 (2001).

    Article  Google Scholar 

  • B. Schmidt, S. Pawlik, N. Matuschek, J. Muller, T. Pliska, J. Troger, N. Lichtenstein, A. Wittmann, S. Mohrdiek, B. Sverdlov, and C. Harder, "980 nm single mode modules yielding 700 mW fiber coupled pump power," in Optical Fiber Conference (OFC), 2002.

  • F. Hakimi, E.S. Kintzer, and R.S. Bondurant, "High-power single-polarization EDFA with wavelength mulitplexed pumps," in Conference on Lasers and Electro-Optics (CLEO), 1998.

  • D.O. Caplan and F. Hakimi, "A high-power high-gain single-polarization EDFA," in Conference on Lasers and Electro-Optics (CLEO), 2000.

  • C. Lester, A. Bjarklev, T. Rasmussen, and P. G. Dinesen, "Modeling of Yb3-Sensitized Er3-Doped Silica Waveguide Amplifiers," J. Lightwave Technol. 13, 740-743 (1995).

    Article  ADS  Google Scholar 

  • Z. J. Chen, J.D. Minelly, and Y. Gu, "Compact low cost Er3+/Yb3+co-doped fibre amplifiers pumped by 827 nm laser diode," Electron. Lett. 32, 1812-1813 (1996).

    Article  Google Scholar 

  • M. Karasek, "Optimum Design of Er3+ -Yb3+ Codoped Fibers for Large-Signal High-Pump-Power Applications," IEEE J. Quantum Electron. 33, 1699-1705 (1997).

    Article  ADS  Google Scholar 

  • J. Nilsson, P. Scheer, and B. Jaskorzynska, "Modeling and Optimization of Short Yb3+-Sensitized Er3+-Doped Fiber Amplifiers," Photon. Technol. Lett. 6, 383-385 (1994).

  • A. Galvanauskas and B. Samson, "High Fiber," in SPIE's oemagazine, 2004, pp. 15-17.

  • I. Berishev, A. Komissarov, N. Moshegov, P. Trubenko, L. Wright, A. Berezin, S. Todorov, and A. Ovtchinnikov, "AlGaInAs/GaAs record high-power conversion efficiency and record high-brightness coolerless 915-nm multimode pumps," in SPIE, 2005.

  • V. Gapontsev, I. Berishev, G. Ellis, A. Komissarov, N. Moshegov, O. Raisky, P. Trubenko, V. Ackermann, E. Shcherbakov, J. Steineke, and A. Ovtchinnikov, "High-efficiency 970-nm multimode pumps " in SPIE, 2005.

  • V. Gapontsev, I. Berishev, G. Ellis, A. Komissarov, N. Moshegov, A. Ovtchinnikov, O. Raisky, P. Trubenko, V. Ackermann, and E. Shcherbakov, "9xx nm single emitter pumps for multi-kW systems," in SPIE, 2006.

  • D.J. Ripin and L. Goldberg, "High efficiency side-coupling of light into optical fibres using imbedded v-grooves," Electron. Lett. 31, 2204-2205 (1995).

    Article  Google Scholar 

  • L. Goldberg, B. Cole, and E. Snitzer, "V-groove side-pumped 1.5 μm fibre amplifier," Electron. Lett. 33, 2127-2129 (1997).

    Article  Google Scholar 

  • L. Goldberg and J. Koplow, "Compact, side-pumped 25 dBm Er/Yb co-doped double cladding fibre amplifier," Electron. Lett. 34, 2027-2028 (1998).

    Article  Google Scholar 

  • D.J. DiGiovanni and A.M. Vengsarkar, "Article comprising a cladding-pumped optical fiber laser," in US Pat. 5,708,669, 1998.

  • D.J. DiGiovanni and A.J. Stentz, "Tapered fiber bundles for coupling light into and out of cladding-pumped fiber devices," in US Pat. 5,864,644, 1999.

  • V.P. Gapontsev and I. Samartsev, "Coupling arrangement between a multi-mode light source and an optical fiber through an intermediate optical fiber length," in US Pat. 5,999,673, 1999.

  • R.P. Espindola, I. Ryazansky, A.J. Stentz, K. L. Walker, and P.F. Wysocki, "Multi-stage optical fiber amplifier having high conversion efficiency," in US Pat. 6,104,733, 2000.

  • F. Hakimi and H. Hakimi, "New side coupling method for double-clad fiber amplifiers," in Conference on Lasers and Electro-Optics (CLEO), 2001.

  • L. Goldberg and M. Le Flohic, "Optical fiber amplifiers and lasers and optical pumping device therefor " in US Pat. 6,608,951, 2003.

  • A.B. Grudinin, D.N. Payne, W. Paul, L.J.A. Nilsson, M.N. Zervas, M. Ibsen, and M.K. Durkin, " Multi-fibre arrangements for high power fibre lasers and amplifiers " in US Pat. 6,826,335, 2004.

  • Y. Jeong, J. Sahu, D.B.S. Soh, C.A. Codemark, and J. Nilsson, "High-power, tunable, single-frequency, single-mode erbium:ytterbium codoped large core fiber master-oscillator power amplifier source," Opt. Lett. 30, 2997 (2005).

    Google Scholar 

  • Y. Jeong, J. Nilsson, J. Sahu, D.B.S. Soh, C. Alegria, P. Dupriez, C.A. Codemark, and D.N. Payne, "Single-frequency, single-mode, plane-polarized ytterbium-doped fiber master oscillator power amplifier source with 264 W of output power," Opt. Lett. 30, 459-461 (2005).

    Google Scholar 

  • N.G. Walker and G.R. Walker, "Polarization Control for Coherent Communications," J. Lightwave Technol. 8, 438-458 (1990).

    Article  ADS  Google Scholar 

  • F. Heismann and M.S. Whalen, "Fast Automatic Polarization Control System," Photonics Technol. Lett. 4, 503-505 (1992).

    Google Scholar 

  • P. Oswald and C.K. Madsen, "Deterministic Analysis of Endless Tuning of Polarization Controllers," J. Lightwave Technol. 24, 2932-2939 (2006).

    Article  ADS  Google Scholar 

  • Duling, I.N. III and R.D. Esman, "Single-polarisation fibre amplifier," Electron. Lett. 28, 1126-1128 (1992).

    Article  ADS  Google Scholar 

  • D.O. Caplan, "Method and apparatus for stabilizing a high-gain, high-power single polarization EDFA," in US Pat. 6,831,779, 2004.

  • F. Hakimi, D.O. Caplan, H. Hakimi, and A.L. Tuffli, "Radiation effects on a two-stage double-pass single-polarization erbium fiber amplifier," in Conference on Lasers and Electro-Optics (CLEO), 2002.

  • K. Morito and S. Tanaka, "Record High Saturation Power (+22 dBm) and Low Noise Figure (5.7 dB) Polarization-Insensitive SOA Module," in Optical Amplifiers and Their Applications (OAA) Topical Meeting, paper TuC2, 2005.

  • Z. Jiang, D.E. Leaird, and A.M. Weiner, "Optical Arbitrary Waveform Generation and Characterization Using Spectral Line-by-Line Control," J. Lightwave Technol. 24, 2487-2494 (2006).

    Article  ADS  Google Scholar 

  • J. Nilsson, Y. Jeong, C. Alegria, R. Selvas, J. Sahu, R. Williams, K. Furusawa, W. Clarkson, D. Hanna, D. Richardson, T. Monro, D. Payne, K. Yla-Jarkko, S. Alam, and A. Grudinin, "Beyond 1 kW with Fiber Lasers and Amplifiers," in Optical Fiber Conference (OFC), 2003.

  • J. Limpert, A. Liem, H. Zellmer, and A. Tuennermann, "Continuous wave ultrahigh brightness fiber laser systems," in IEEE Photonics West, 2003.

  • I.T. McKinnie, J.E. Koroshetz, W.S. Pelouch, D.D. Smith, J.R. Unternahrer, S.W. Henderson, and M. Wright, "Self-imaging waveguide Nd:YAG laser with 58% slope efficiency," in Conference on Lasers and Electro-Optics (CLEO), 2002.

  • M.D. Mermelstein, A.D. Yablon, and C. Headley, "Suppression of Stimulated Brillouin Scattering in an Er-Yb Fiber Amplifier Utilizing Temperature-Segmentation," in OAA, Paper TuD3, Budapest, Hungary, 2005.

  • R.G. Smith and S.D. Personick, "Receiver Design," in Semiconductor Devices for Optical Communication, H. Kressel, Ed. (New York: Springer-Verlag, 1980).

  • Y. Miyamoto, Y. Hagimoto, and T. Kagawa, "A 10 Gb/s high sensitivity optical receiver using an InGaAs-InAlAs superlattice APD at 1.3 μ m/1.5 μ m," IEEE Photon. Technol. Lett. 3, 372-374 (1991).

    Google Scholar 

  • T.Y. Yun, M.S. Park, J.H. Han, I. Watanabe, and K. Makita, "IO-Gigabit-per-Second High-Sensitivity and Wide-Dynamic-Range APD-HEMT Optical Receiver," Photonics Technol. Lett. 8, 1232-1234 (1996).

    Google Scholar 

  • T.V. Muoi, "Extremely sensitive direct detection receiver for laser communications," in Conference on Lasers and Electro-Optics (CLEO), 1987.

  • A. MacGregor and B. Dion, "39 Photons/bit direct detection receiver at 810 nm, BER=1E-6, 60 Mb/s, QPPM," Proc. SPIE (Free-Space Laser Communication Technologies III), 1417, (1991).

  • H. Matsuda, A. Miura, H. Irie, S. Tanaka, K. Ito, S. Fujisaki, T. Toyonaka, H. Takahashi, H. Chiba, S. Irikura, R. Takeyari, and T. Harada, "High-sensitivity and wide-dynamic-range 10 Gbit/s APD/preamplifier optical receiver module," Electron. Lett. 38, 650-651 (2002).

    Article  Google Scholar 

  • J.R. Lesh, "Power Efficient Communications for Space Applications," in International Telemetering Conference, 1982.

  • B.E. Moision and J. Hamkins, "Deep-Space Optical Communications Downlink Budget: Modulation and Coding," JPL IPN Progress Report 42-154, 2003.

  • X. Sun, et. al., "Space-qualified silicon avalanche-photodiode single-photon-counting modules," J. Mod. Optics 51, 1333-1350 (2004).

    Google Scholar 

  • D.M. Boroson, R.S. Bondurant, and D.V. Murphy, "LDORA: A Novel Laser Communication Receiver Array Architecture," Proc. SPIE 5338, 16-28 (2004).

    Google Scholar 

  • O.M. Efimov, L.B. Glebov, L.N. Glebova, K.C. Richardson, and V.I. Smirnov, "High-Efficiency Bragg gratings in photothemorefractive glass," Appl. Opt. 38, 619-627 (1999).

    ADS  Google Scholar 

  • D.O. Caplan, "Spectral Filtering," in Mars Laser Communication Demonstration (MLCD) Receiver Final Report (MIT Lincoln Laboratory, 2005).

  • F. Herzog, K. Kudielka, D. Erni, and W. Bachtold, "Optical Phase Locking by Local Oscillator Phase Dithering," IEEE J. Quantum Electron. 42, 973-985 (2006).

    Article  ADS  Google Scholar 

  • H.P. Yuen and V.W.S. Chan, "Noise in Homodyne and Heterodyne Detection," Opt. Lett. 8, 177-179 (1983).

    Google Scholar 

  • G.L. Abbas, V.W.S. Chan, and T.K. Yee, "A Dual-Detector Optical Heterodyne Receiver for Local Oscillator Noise Suppression," IEEE J. Lightwave Technol. LT-3 (5), 1110-1122 (October 1985).

    Google Scholar 

  • S.B. Alexander, "Design of Wide-Band Optical Heterodyne Balanced Mixer Receivers," J. Lightwave Technol. LT-5, 523-537 (1987).

    Article  ADS  Google Scholar 

  • L.G. Kazovsky and O.K. Tonguz, "Sensitivity of Direct-Detection Lightwave Receivers Using Optical Preamplifiers," Photon. Technol. Lett. 3, 53-55 (1991).

    Google Scholar 

  • S.R. Chinn, D.M. Boroson, and J.C. Livas, "Sensitivity of optically preamplified DPSK receivers with Fabry-Perot filters," J. Lightwave Technol. 14, (1996).

  • P.J. Winzer, M. Pfennigbauer, M.M. Strasser, and W.R. Leeb, "Optimum filter bandwidths for optically preamplified NRZ receivers," J. Lightwave Technol. 19, 1263-1273 (2001).

    Article  ADS  Google Scholar 

  • M. Pfennigbauer, M.M. Strasser, M. Pauer, and P.J. Winzer, "Dependence of Optically Preamplified Receiver Sensitivity on Optical and Electrical Filter Bandwidths--Measurement and Simulation," Photon. Technol. Lett. 14, 831-833 (2002).

    Google Scholar 

  • L. Y. Lin, M.C. Wu, and T. Itoh, "Figure of merit for high-power, high-speed photodetectors," in Optical Fiber Conference (OFC), 1997.

  • A.M.D. Beling, D. Schmidt, H.-G. Bach, G.G. Mekonnen, R. Ziegler, V. Eisner, M. Stollberg, G. Jacumeit, E. Gottwald, and J.-J. Weiske, "High power 1550 nm twin-photodetector modules with 45 GHz bandwidth based on InP," in Optical Fiber Conference (OFC), 2002.

  • T.S. Rose, D. Gunn, and G.C. Valley, "Gamma and proton radiation effects in erbium-doped fiber amplifiers: active and passive measurements," J. Lightwave Technol. 19, 1918-1923 (2001).

    Article  ADS  Google Scholar 

  • P.A. Humblet, "Design of optical matched filters," in Globecom '91, 1991.

  • H.L. Van Trees, Detection, estimation, and modulation theory, Part 1 (New York: Wiley, 1968).

  • H. Geiger, M. Ibsen, and R.I. Laming, "Optimum receivers with fiber gratings," in Optical Fiber Conference (OFC), 1998.

  • S.R. Chinn, "Error-rate performance of optical amplifiers with Fabry-Perot filters," Electron. Lett. 31, 756-757 (1995).

    Article  ADS  Google Scholar 

  • R.C. Steele and G.R. Walker, "High-sensitivity FSK signal detection with an erbium-doped fiber preamplifier and Fabry-Perot etalon demodulation," IEEE Photon. Technol. Lett. 2, 753-755 (1990).

    Google Scholar 

  • J.D. Berger, F. Ilkov, D. King, A. Tselikov, and D. Anthon, "Widely tunable, narrow optical bandpass Gaussian filter using a silicon microactuator," in Optical Fiber Conference (OFC), 2003.

  • A. D'Errico, R. Proietti, N. Calabretta, L. Giorgi, G. Contestabile, and E. Ciaramella, "WDM-DPSK Detection by Means of Frequency-Periodic Gaussian Narrow Filtering " in Optical Fiber Conference (OFC), 2006.

  • B.E. Little, et. al., "Very high-order microring resonator filters for WDM applications," IEEE Photon. Tech. Lett. 16, 2263-2265 (2004).

    Google Scholar 

  • C.K. Madsen and J.H. Zhao, Optical filter design and analysis (New York: John Wiley & Sons, Inc., 1999).

  • H. Takahashi, K. Oda, H. Toba, and Y. Inoue, "Transmission characteristics of arrayed-waveguide N x N wavelength multiplexer," J. Lightwave Technol. 13, 447-455 (1995).

    Article  ADS  Google Scholar 

  • K. Takada, M. Abe, T. Shibata, and K. Okamoto, "A 25-GHz-Spaced 1080-Channel Tandem Multi/Demultiplexer Covering the S-, C-, and L-Bands Using an Arrayed-Waveguide Grating With Gaussian Passbands as a Primary Filter," Photon. Technol. Lett. 14, 648-650 (2002).

  • I. Littler, M. Rochette, and B. Eggleton, "Adjustable bandwidth dispersionless bandpass FBG optical filter," Opt. Express 13, 3397-3407 (2005).

    Google Scholar 

  • A. Nosratinia, "Self-characteristic Distributions," J. Franklin Institute 36, 1219-1224 (1999).

    Google Scholar 

  • A. Hasegawa and F. Tappert, "Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion," Appl. Phys. Lett. 23, 142-144 (1973).

    Article  ADS  Google Scholar 

  • L.F. Mollenauer, "Ultra-long distance soliton transmission: putting fiber nonlinearity to work," in LEOS, 1993.

  • J. O'Reilly, J. da Rocha, and K. Schumacher, "Optical Fiber Direct Detection Receivers Optimally Tolerant to Jitter," IEEE Trans. Commun. 34, 1141-1147 (1986).

    Google Scholar 

  • J.P. Gordon and H.A. Haus, "Random walk of coherently amplified solitons in optical fiber transmission," Opt. Lett. 11, 665-667 (1986).

    Google Scholar 

  • G. Bosco, R. Gaudino, and P. Poggiolini, "An exact analysis of RZ versus NRZ sensitivity in ASE noise limited optical systems," in ECOC, 2001.

  • G. Bosco, A. Carena, V. Curri, R. Gaudino, and P. Poggiolini, "On the Use of NRZ, RZ, and CSRZ Modulation at 40 Gb/s With Narrow DWDM Channel Spacing," J. Lightwave Technol. 20, 1694-1704 (2002).

    Article  ADS  Google Scholar 

  • J.H. Shapiro, "Signal-to-Noise Ratio Analysis for a Preamplified Direct-Detection Receiver with Pre- and Post-Detection Matched Filters," private communication, 2005.

  • G. Bosco and P. Poggiolini, "The Effect of Receiver Imperfections on the Performance of Direct-Detection Optical Systems using DPSK Modulation," in Optical Fiber Conference (OFC), 2003.

  • G. Bosco and P. Poggiolini, "The Impact of Receiver Imperfections on the Performance of Optical Direct-Detection DPSK," J. Lightwave Technol. 23, 842-848 (2005).

    Article  ADS  Google Scholar 

  • J. Hsieh, A. Chiayu, V. Chien, X. Liu, A. Gnauck, and X. Wei, "Athermal Demodulator for 42.7-Gb/s DPSK Signals," in ECOC, 2005.

  • X. Liu, A.H. Gnauck, X. Wei, J. Hsieh, C. Ai, and V. Chien, "Athermal optical demodulator for OC-768 DPSK and RZ-DPSK signals," Photon. Technol. Lett. 17, 2610-2612 (2005).

    Google Scholar 

  • M.L. Stevens, "A High-speed DPSK encoder," private communication, 1998.

  • W. Kaiser, T. Wuth, M. Wichers, and W. Rosenkranz, " Reduced complexity optical duobinary 10-Gb/s transmitter setup resulting in an increased transmission distance," Photon. Technol. Lett. 13, 884-886 (2001).

    Google Scholar 

  • I. Kang, C. Xie, C. Dorrer, and A. Gnauck, "Implementations of alternate-polarization differential-phase-shift-keying transmission," Electron. Lett. 40, 333-335 (2004).

    Article  Google Scholar 

  • C. Schramm, H.-G. Bach, A.M.D. Beling, G. Jacumeit, S. Ferber, R. Ludwig, R. Ziegler, G. G. Mekonnen, R. Kunkel, D. Schmidt, W. Schlaak, and G. Unterborsch, "High-bandwidth balanced photoreceiver suitable for 40-gb/s RZ-DPSK modulation formats," IEEE Sel. Topics Quantum Electron. 11, 127-134 (2005).

    Google Scholar 

  • E.A. Swanson, J.C. Livas, and R.S. Bondurant, "High sensitivity optically preamplified direct detection DPSK receiver with active delay-line stabilization," IEEE Photon. Technol. Lett. 6, 263-265 (1994).

    Google Scholar 

  • D.G. Heflinger , J.S. Bauch, and T. E. Humes, "Apparatus and method for tuning an optical interferometer," in US Pat. 6,396,605, 2002.

  • F. Seguin and F. Gonthier, "Tuneable All-Fiber Delay-Line Interferometer for DPSK Demodulation," in Optical Fiber Conference (OFC), 2005.

  • D.O. Caplan, "Polarization Independent Interferometer designs," MIT Lincoln Laboratory, private correspondence, 1999.

  • D.A. Rockwell, D. H. Matsuoka, and C. L. Schulz, "Differential Phase Shift Keyed Demodulator System," in US Pat. 6,834,146 B2, 2004.

  • M.L. Stevens, S. Constantine, and D.O. Caplan, "Measured and calculated DPSK SNR change due to frequency offset error at 40 Gbit/s," private communication, 2006.

  • P.J. Winzer, F. Fidler, M.J. Matthews, L.E. Nelson, H.J. Thiele, J.H. Sinsky , S. Chandrasekbar, M. Winter, D.M. Castagnozzi, L.W. Stulz, and L.L. Buhl, "10-Gb/s Upgrade of Bidirectional CWDM Systems Using Electronic Equalization and FEC," J. Lightwave Technol. 23, 203-210 (2005).

    Article  ADS  Google Scholar 

  • S.K. Nielsen, B.F. Skipper, and J.P. Vailladsen, "Universal AFC for use in optical DPSK systems," Electron. Lett. 29, 1445-1446 (1993).

    Article  Google Scholar 

  • K. Kudielka and W. Klaus, "Optical homodyne PSK receiver: Phase synchronization by maximizing base-band signal power," in LEOS, 1999.

  • A.H. Gnauck, G. Raybon, S. Chandrasekhar, J. Leuthold, C. Doerr, L. Stulz, and E. Burrows, "25 x 40-Gb/s copolarized DPSK transmission over 12 x 100-km NZDF with 50-GHz channel spacing," IEEE Photon. Technol. Lett. 15, 467-469 (2003).

    Google Scholar 

  • H. Bissessur, G. Charlet, E. Gohin, C. Simonneau, L. Pierre, and W. Idler, "1.6 Tbit/s (40 x 40 Gbit/s) DPSK transmission over 3 x 100 km of TeraLight fibre with direct detection," Electron. Lett. 39, 192-193 (2003).

    Article  Google Scholar 

  • T. Mizuno, M. Oguma, T. Kitoh, Y. Inoue, and T. Takahashi, "Mach-Zehnder Interferometer Exactly Aligned With ITU Grid Frequencies," Photon. Technol. Lett. 18, 325-327 (2006).

    Google Scholar 

  • T. Hoshida and H. Onaka, "Method and system for demultiplexing non-intensity modulated wavelength division multiplexed (WDM) signals," in U.S. Pat. 7,035,543, 2006 (filed 2001).

  • P.J. Winzer, "Optical Receiver for Wavelength-Division-Multiplexed Signals," in US Pat. Appl. 2004/0258423 A1, 2004.

  • B. Zhu, L. E. Nelson, S. Stultz, A.H. Gnauck, C. Doerr, J. Leuthold, L. Gruner-Nielsen, M.O. Pedersen, and R.L. Lingle, Jr., "High Spectral Density Long-Haul 40-Gb/s Transmission Using CSRZ-DPSK Format," J. Lightwave Technol. 22, 208-214 (2004).

    Article  ADS  Google Scholar 

  • D.A. Atlas and L.G. Kazovsky, "An optical PSK homodyne transmission experiment using 1320 nm diode-pumped Nd:YAG lasers," IEEE Photon. Technol. Lett. 2, 367-370 (1990).

    Google Scholar 

  • D.M. Castagnozzi, J.C. Livas, E.A. Bucher, L.L. Jeromin, and J.W. Miller, "Performance of a 1 Gbit/s optically preamplified communication system with error correcting coding," Electron. Lett. 30, 65-66 (1994).

    Article  Google Scholar 

  • D.O. Caplan, S. Constantine, and M.L. Stevens, "Near-quantum-limited OOK and binary-FSK receiver sensitivity using a Filtered Direct-Drive pulse-carved MOPA transmiter and an optically preamplified receiver at 1.25 Gbit/s," private communication, 2006.

  • R.A. Linke, et. al., "Coherent lightwave transmission over 150 km fiber lengths at 400 Mbit/s and 1 Gbit/s data rates using phase modulation," Electron. Lett. 22, 30-31 (1985).

    Article  Google Scholar 

  • T. Imai, T. N. Ohkawa, Y. Ichihashi, T. Sugie, and T. Ito, "Over 300 km CPFSK transmission experiment using 67 photon/bit sensitivity receiver at 2.5 Gbit/s," Electron. Lett. 26, 357-358 (1990).

    Article  Google Scholar 

  • J.M. Kahn, A.H. Gnauck, J.J. Veselka, S.K. Korotky, and B.L. Kasper, "4-Gb/s PSK homodyne transmission system using phase-locked semiconductor lasers," IEEE Photon. Technol. Lett. 2, 285-287 (1990).

    Google Scholar 

  • T. Chikama, et. al., "Modulation and demodulation techniques in optical heterodyne PSK transmission systems," J. Lightwave Technol. 8, 309-321 (1990).

    Article  ADS  Google Scholar 

  • I. Hardcastle, T. Large, F. Davis, and A. Hadjifotiou, "High performance 140 Mbit/s FSK coherent system," Electron. Lett. 26, 1523-1525 (1990).

    Article  Google Scholar 

  • T. Naito, T. Chikama, and G. Ishikawa, "Optimum system parameters for multigigabit CPFSK optical heterodyne detection systems," J. Lightwave Technol. 12, 1835-1841 (1994).

    Article  ADS  Google Scholar 

  • S. Norimatsu, H. Mawatari, Y. Yoshikuni, O. Ishida, and K. Iwashita, "10 Gbit/s optical BPSK homodyne detection experiment with solitary DFB laser diodes," Electron. Lett. 31, 125-127 (1995).

    Article  Google Scholar 

  • R.I. Laming, A.H. Gnauck, C.R. Giles, M.N. Zervas, and D.N. Payne, "High-sensitivity two-stage erbium-doped fiber preamplifier at 10 Gb/s," IEEE Photon. Technol. Lett. 4, 1348-1350 (1992).

    Google Scholar 

  • E. Meissner, "116 photons/bit in a 565 Mbit/s optical DPSK heterodyne transmission ex-periment," Electron. Lett. 25, 281-282 (1989).

    Article  Google Scholar 

  • T.J. Paul, E.A. Swanson, J.C. Livas, R.S. Bondurant, and R.J. Magliocco, "3 Gbit/s optically preamplified direct detection DPSK receiver with 116 photon/bit sensitivity," Electron. Lett. 29, 614-615 (1993).

    Article  Google Scholar 

  • Y.K. Park, J.-M. P. Delavaux, Mizuhara, L.D. Tzend, T.V. Nguyen, M.L. Kao, P.D. Yeates, S.W. Granlund, and S.J., "5 Gbit/s Optical Preamplifier Receiver with 135 Photons/bit Usable Receiver Sensitivity," in Optical Fiber Conference (OFC), paper TuD4, 1993.

  • T. Saito, Y. Sunohara, K. Fukagai, S. Ishikawa, N. Henmi, S. Fujita, and Y. Aoki, "High Receiver Sensitivity at 10 Gb/s Using an Er-Doped Fiber Preamplifier Pumped with a 0.98 μ m Laser Diode " IEEE Photon. Technol. Lett. 3, 551-553 (1991).

    Google Scholar 

  • P.P. Smyth, R. Wyatt, A. Fidler, P. Eardley, A. Sayles, and S. Craig-Ryan, "152 photons per bit detection at 622 Mbit/s to 2.5 Gbit/s using an erbium fibre preamplifier," Electron. Lett. 26, 1604-1605 (1990).

    Article  ADS  Google Scholar 

  • L.D. Tzeng, R.E. Frahm, and W. Asous, "A high-performance optical receiver for 622 Mb/s direct-detection systems," Photon. Technol. Lett. 2, 759-761 (1990).

    Google Scholar 

  • K. Kannan, et. al., "High-sensitivity receiver optical preamplifiers," IEEE Photon. Technol. Lett. 4, 272-275 (1992).

    Google Scholar 

  • A.H. Gnauck, K.C. Reichmann, J.M. Kahn, S.K. Korotky, J.J. Veselka, and T.L. Koch, "4-Gb/s heterodyne transmission experiments using ASK, FSK and DPSK modulation," IEEE Photon. Technol. Lett. 2, 908-910 (1990).

    Google Scholar 

  • T. Kataoka, Y. Miyamoto, K. Hagimoto, and K. Noguchi, "20 Gbit/s long distance transmission using a 270 photon/bit optical preamplifier receiver," Electron. Lett. 30, 716-716 (1994).

    ADS  Google Scholar 

  • M. Shikada, et. al., "1.5 m high bit rate long span transmission experiments employing a high power DFB-DC-PBH laser diode," in European Conference on Optical Communication (Istituto Internazionale delle Communicazioni: Genva, 1985).

  • J.C. Campbell, et. al., "High performance avalanche photodiode with separate absorption grading and multiplication regions," Electron. Lett. 19, 818-820 (1983).

    Article  ADS  Google Scholar 

  • K. Hagimoto, et. al., "Twenty-Gbit/s signal transmission using a simple high-sensitivity optical receiver," in Optical Fiber Conference (OFC), 1992, paper Tul3.

  • V. Vilnrotter, C.-W. Lau, M. Srinivasan, K. Andrews, and R. Mukai, "Optical Array Receiver for Communication Through Atmospheric Turbulence," J. Lightwave Technol. 23, 1664-1675 (2005).

    Article  ADS  Google Scholar 

  • D.O. Caplan and J.J. Carney, "Angstrom class narrow band filters at 1060-1080 nm," MIT Lincoln Laboratory, internal memorandum, 2003.

  • D.O. Caplan, "Spectral Filtering " in Mars Laser Communication Demonstration (MLCD) Preliminary Design Review (PDR) (MIT Lincoln Laboratory and NASA, 2005).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caplan, D. Laser communication transmitter and receiver design. J Optic Comm Rep 4, 225–362 (2007). https://doi.org/10.1007/s10297-006-0079-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10297-006-0079-z

Keywords

Navigation