Skip to main content
Log in

Survey of systems experiments demonstrating dispersion compensation technologies

  • Published:
Journal of Optical and Fiber Communications Reports

Abstract

Chromatic dispersion compensation is an integral part of WDM transmission system design. Compensator properties such as insertion loss, dispersion slope and effective mode area have a large impact on WDM system performance due to nonlinear optical propagation effects. Dispersion compensator imperfections, such as multi-path interference, group delay ripple, insertion loss ripple and limited per-channel compensation bandwidth, place additional limitations on the achievable transmission distance and capacity. In this paper, a survey of key WDM transmission system experiments is undertaken to 1) review the development of chromatic dispersion compensation technologies, 2) discuss the device characteristics that most impact system design for each technology, and 3) hopefully enable the reader to better evaluate compensator technologies for specific applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • N.S. Bergano and C.R. Davidson, "Circulating loop transmission experiments for the study of long-haul transmission systems using erbium-doped fiber amplifiers,'' J. Lightwave Technol. 13 (5) 879-888 (May 1995).

    Article  ADS  Google Scholar 

  • Y. Sun, B.S. Marks, I.T. Lima, K. Allen, G.M. Carter, C.R. Menyuk, "Polarization state evolution in recirculating loops,'' Proc. of OFC, Paper ThI4 (2002).

  • N.S. Bergano, F.W. Kerfoot and C.R. Davidson, "Margin Measurements in optical amplifier systems,'' Photon. Technol. Lett. 5 (3) 304-306 (1993).

    Article  ADS  Google Scholar 

  • N.A. Ollson, "Lightwave systems with optical amplifiers,'' J. Lightwave Technol. 7 (7) 1071-1082 (July 1989).

    Article  ADS  Google Scholar 

  • J.L. Zyskind, D.J. DiGiovanni, J.W. Sulhoff, P.C. Becker and C.H. Brito Cruz, "High performance erbium-doped fiber amplifier pumped at 1.48 μm and 0.97 μm,'' Opt. Ampl. Appl., Monterrey, CA), Paper PD-P6, 1990.

  • M. Nakazawa, Y. Kimura and K. Suzuki, "An ultra efficient erbium-doped fiber amplifier of 10.2 dB/mW at 0.98 μm pumping and 5.1 dB/mW at 1.48 μm pumping, Opt. Ampl. Appl., Monterrey, CA, Paper PD-P1, 1990.

  • C.D. Poole, J. M. Wiesenfeld, A. R. McCormick, K. T. Nelson, "Broadband dispersion compensation by using the higher-order spatial mode in a two-mode fiber,'' Opt. Lett. 17, 985 (1992).

    ADS  Google Scholar 

  • A.J. Antos and D.K. Smith, "Design and characterization of dispersion compensating fiber based on the LP01 mode,'' J. Lightwave Technol. 12 (10), 1739-1745 (1994).

    Article  ADS  Google Scholar 

  • D. Marcuse, "Single-channel operating in very long nonlinear fibers with optical amplifiers at zero dispersion,'' J. Lightwave Technol. 9, 3 (1991).

    Google Scholar 

  • L. Gruner-Nielsen, S.N. Knudsen, T. Veng, B. Edvold and C.C. Larsen, "Design and manufacture of dispersion compensating fibre for simultaneous compensation of dispersion and dispersion slope,'' in Proc. of OFC, Paper WM132-1 (1999).

  • M. Wandel, P. Kristensen, T. Beng, Y. Qian, Q. Le and L. Gruner-Nielsen, "Dispersion compensating fibers for non-zero dispersion fibers,'' Proc. of OFC, Paper WU1 (2002).

  • T. Yokokawa, T. Kato, T. Fuji, Y. Yamamoto, N. Honma, A. Kataoka, M. Onishi, E. Sasaoka, K. Okamoto, "Dispersion compensating fiber with large negative dispersion around -300 ps/nm/km and its application to compact module for dispersion adjustment,'' Proc. of OFC, Paper FK5 (2003).

  • L. Gruner-Nielsen, Y. Qian, B. Palsdottir, P. Borg Gaarde, S. Drybol and T. Veng, "Module for simultaneous C+L band dispersion compensation and Raman amplification,'' Proc. of OFC, Paper TuJ6 (2002).

  • M. Hirano, A. Tada, T. Kato, M. Onishi, Y. Madio, M. Nishimura, "Dispersion compensating fiber over 140 nm bandwidth,'' Proc. of ECOC, Paper Th.M.1.4 (2001).

  • B. Edvold and L. Gruner-Nielsen, "New techniques for reducing the splice loss to dispersion compensating fiber,'' in Proc. of ECOC, Paper TuP.07, 10996.

  • A.M. Vengsarkar and W.A. Reed, "Dispersion-compensating single-mode fibers: Efficient designs for first-and second-order compensation,'' Opt. Lett. 18, 924-926 (1993).

    ADS  Google Scholar 

  • C.D. Chen, J.-M. P. Delavaux, B.W. Hakki, O. Mizuhara, T.V. Nguyen, R.J. Nuyts, K.Ogawa, Y. K. Park, R.E. Tench, L.D. Tzeng and P.D. Yeates, "Field experiment of 10Gbit/s, 360 km transmission through embedded standard (non-DSF) fibre cables,'' Electronics Lett. 30 (14), 1159-1160 (1994).

    Article  Google Scholar 

  • Y. Akasaka, R. Sugizaki, A. Umeda, T. Kamiya, "High-dispersion-compensation ability and low nonlinearity of W-shaped DCF,'' Proc. of OFC, paper Tha3 (1996).

  • Y.K. Park, P.D. Yeates, J.-M. P. Delavaux, O. Mizuhara, T.v. Nguyen, L.D. Tzeng, R.E. Tench, B.W. Hakki, C.D. Chen, R.J. Nuyts and K. Ogawa, "A field demonstration of 20-Gbps capacity transmission over 360 km of installed standard (non-DSF) fiber,'' IEEE Photon. Technol. Lett. 7 (7), 816-818 (1995).

    Article  ADS  Google Scholar 

  • N. Kikuchi, S. Sasaki and K. Sekine, "10 Gbit/s dispersion-compensated transmission over 2245 km conventional fibres in a recirculating loop,'' Electronics Lett. 31 (5), 375-377 (1995).

    Article  Google Scholar 

  • L. Leng, B. Zhu, S. Stulz and L.E. Nelson, "1.6 Tb/s (40 ×40 Gbps) transmission over 500 km of nonzero dispersion fiber with 100-km amplified spans compensated by extra-high-slope dispersion-compensating fiber,'' Proc. of OFC, Paper ThX2 (2002).

  • P.B. Hansen, G. Jacobovitz-Veselka, L. Gruner-Nielsen and A.J. Stentz, "Raman amplification for loss compensation in dispersion compensating fibre modules,'' Electron. Lett. 34 (11), 1136-1137 (1998).

    Article  Google Scholar 

  • Y. Emori, Y. Akasaka and S. Namiki, "Broadband lossless DCF using Raman amplification pumped by multi-channel WDM laser diodes,'' Electron. Lett. 34, 22 (1998).

    Article  Google Scholar 

  • H. Bissessur, G. Charlet, C. Simonneau, S. Borne, L. Pierre, C. De Barros, P. Tran, W. Idler and R. Dischler, "3.2 Tb/s (80 × 40 Gbps) C-band transmission over 3 × 10 km with 0.8bit/s/Hz efficiency,'' Proc. of ECOC, Paper PD.M.1.11 (2001).

  • T. Miyamoto, T. Tsuzaki, T. Okuno, M. Kakui, M. Hirano, M. Onishi and M. Shigematsu, "Raman amplification over 100 nm-bandwidth with dispersion and dispersion slope compensation for conventional single mode fiber,'' Proc. of OFC, Paper TuJ7, p. 66-67 (2002).

  • L. Leng, S. Stulz, B. Zhu, L.E. Nelson, B. Edvold, L. Gruner-Nielsen, S. Radic, J. Centanni and A. Gnauck, "1.6-Tb/s (160 ×10.7 Gbps) transmission over 4000 km of Nonzero dispersion fiber at 25-GHz channel spacing,'' IEEE Photon. Technol. Lett. 15 ( 8), 1153-1155 (2003).

    Article  ADS  Google Scholar 

  • R.E. Neuhauser, P.M. Krummrich, H. Bock and C. Glingener, "Impact of nonlinear pump interactions on broadband distributed Raman amplification,'' Proc. of OFC, Paper MA4 (2001).

  • J. Bromage, P.J. Winzer, L.E. Nelson and C.J. McKinstrie, "Raman-enhanced pump-signal four-wave mixing in bidirectionally pumped Raman amplifiers,'' Proc. of OAA, Paper OWA-5 (2002).

  • B. Zhu, L.E. Nelson, S. Stulz, A.H. Gnauck, C. Doerr, J.Leuthold, L. Gruner-Nielsen, M.O Pedersen, J. Kim and R. Lingle, "High spectral density long-haul 40-Gbps transmission using CSRZ-DPSK format,'' J. Lightwave Technol. 22 (1), 208-214 (2004).

    Google Scholar 

  • H.S. Chung, H. Kim, S.E. Jin, E.S. Son, D.W. Kim, K.M. Lee, H.Y Park and Y.C. Chung, "320-Gbps WDM transmission with 50-GHz channel spacing over 564 km of short-period dispersion managed fiber (Perfect Cable),'' IEEE Photon. Technol. Lett. 12 (10), 1397-1399 (2000).

    Article  ADS  Google Scholar 

  • S.N. Knudsen, M.O. Pedersen and L. Gruner-Nielsen, "Optimisation of dispersion compensating fibres for cabled long-haul application,'' Electronics Lett. 36, 25 (7 December 2000).

    Article  Google Scholar 

  • S.N. Knudsen, "Design and manufacture of dispersion compensating fibers and their performance in systems,'' Proc. of OFC, paper WU3, p. 330-331 (2002).

  • L.E. Nelson, L.D. Garrett, A.R. Chraplyvy, and R.W. Tkach, "NZDSF dispersion maps in 2000-km 8 × 10-Gbps WDM transmission,'' Proc. of ECOC, pp.315-316 (1998).

  • A. Boskovic and D.L. Butler, "Transmission of 32 channels at 10Gbit/s over 450 km of dispersion managed cable using LEAFTM and sub-LSTM fibres,'' Electronics Lett. 35 (5) (4 March 1999).

  • K. Tanaka, T. Tsuritani, N. Edagawa and M. Suzuki, "320 Gbit/s (32 ×10.7Gbit/s) error-free transmission over 7280 km using dispersion flattened fibre link with standard SMF and slope compensating DCF,'' Electronics Lett. 35, 21 (14 October 1999).

    Google Scholar 

  • H.S. Chung, S.E. Jin, D.W. Lee, D.W. Kim and Y.C. Chung, "640 Gbps (32 ×20 Gbps) WDM transmission with 0.4 bit/s/Hz spectral efficiency using short-period dispersion managed fiber (Perfect CableTM),'' Proc. of OFC, Paper ThF6 (2001).

  • Y. Inada, K. Fukuchi, T. Ono, T. Ogata and H. Okamura, "2400-km transmission of 100-GHz-spaced 40-Gbps WDM signals using a "double-hybrid'' fiber configuration,'' Proc. of ECOC, Paper WeF.1.6 (2001).

  • H. Sugahara, K. Fukuchi, A. Tanaka, Y. Inada and T. Ono, "6,050 km transmission of 32 ×42.7Gbps DWDM signals using Raman-amplified quadruple-hybrid span configuration,'' Proc. of OFC, Paper FC6 (2002).

  • L. du Mouza et al, "1.28 Tbit/s (32 ×40 Gbit/s) WDM transmission over 2400 km of TeraLighttm/Reverse TeraLight© fibres using distributed all-Raman amplification,'' Electronics Lett. 37, 21 (11 October 2001).

  • C. Rasmussen, T. Fjelde, J. Bennike, F. Liu, S. Key, B. Mikkelsen, P. Mamyshev, P. Serbe, P. van der Wagt, Y. Akasaka, D. Harris, D. Gapontsev, V. Ivshin and P. Reeves-Hall, "DWDM 40G transmission over trans-pacific distance (10 000 km) using CSRZ-DPSK enhanced FEC, and all-Raman-amplified 100-km UltraWave fiber spans,'' J. Lightwave Technol. 22 (1), 203-207 (January 2004).

    Article  ADS  Google Scholar 

  • N.S. Bergano, C.R. Davidson, B.M. Nyman, S.G. Evangelides, J.M. Darcie, J.D. Evankow, P.C. Corbett, M.A. Mills, G.A. Ferguson, J.A. Nagel, J.L. Zysking, J.W. Sulhoff, A.J. Lucero and A.A. Klein, "40 Gbps WDM transmission of eight 5 Gbps data channels over transoceanic distances using the conventional NRZ modulation format,'' Proc. of OFC, Paper PD-19 (1995).

  • N.S. Bergano and C.R. Davidson, "Wavelength division multiplexing in long-haul transmission system,'' J. Lightwave Technol. 14 (6), 1299-1308 (June 1996).

    Article  ADS  Google Scholar 

  • J.-X. Cai, D.G. Foursa, C.R. Davidson, Y. Cai, G. Domagala, H. Li, L. Liu, W.W. Patterson, A.N. Pilipetskii, M. Nissov and N.S. Bergano, " A DWDM demonstration of 3.73 Tb/s over 11,000 km using 373 RZ-DPSK channels at 10 Gbps,'' Proc. Of OFC, Paper PD-22 (2003).

  • T. Tsuritani, K. Ishida, A. Agata, K. Shimomura, I. Morita, T. Tokura, H. Taga, T. Mizuochi, N. Edagawa and S. Akiba, "70-GHz-spaced 40 × 32.7 Gbps transpacific transmission over 9400 km using prefiltered CSRZ-DPSK signals, all-Raman repeaters, and symmetrically dispersion-managed fiber spans,'' J. Lightwave Technol. 22 (1) 215-223 (January 2004).

    Article  ADS  Google Scholar 

  • G. Charlet, E. Corbel, J. Lazaro, A. Klekamp, R. Dischler, P. Tran, W. Idler, H. Mardoyan, A. Konczykowska, F. Jorge and S. Bigo, "WDM transmission at 6-Tb/s capacity over transatlantic distance, using 42.7 Gb/s differential phase-shift keying without pulse carver,'' J. Lightwave Technol. 23 (1), 14-107 (January 2005).

    Article  Google Scholar 

  • S.N. Knudsen, B. Zhu, L.E. Nelson, M.O. Pedersen, D.W. Peckham and S. Stulz, "420 Gbit/s (42 ×10 Gbit/s) WDM transmission over 4000 km of UltraWave fibre with 100 km dispersion-managed spans and distributed Raman amplification,'' Electron. Lett. 37 (15) (19 July 2001).

    Article  MathSciNet  Google Scholar 

  • B. Zhu, S.N. Knudsen, L.E. Nelson, D.W. Peckham, M.O. Pedersen and S. Stulz, "800 Gbit/s (80 ×10.664 Gbit/s) WDM transmission over 5200 km of fibre employing 100 km dispersion-managed spans,'' Electron. Lett. 37 (24) (22 November 2001).

    Google Scholar 

  • B. Zhu, L. Leng, L.E. Nelson, S. Knudsen, J. Bromage, D. Peckham, S. Stulz, K. Brar, c. Horn, K. Feder, H. Thiele and T. Veng, "1.6Tb/s (40 ×42.7Gbps) transmission over 2000 km of fiber with 100-km dispersion-managed spans,'' Proc. of ECOC, Paper PD.M.1.8 (2001).

  • F. Liu J. Bennike, S. Dey, C. Rassmussen, B. Mikkelsen, P. Mamyshev, D. Gapontsev and V. Ivshin, "1.6 Tb/s (42×42.7Gbps) transmission over 3600 km UltraWave fiber with all-Raman amplified 100-km terrestrial spans using ETDM transmitter and receiver,'' Proc. of OFC, Paper FC7 (2002).

  • C. Rassmussen, S. Dey, F. Liu, J. Bennike, B. Mikkelsen, P. Mamyshev, M. Kimmitt, K. Springer, D. Gapontsev and V. Ivshin, "Transmission of 40×42.7 Gbps over 5200 km UltraWave fiber with terrestrial 100-km spans using turn-key ETDM transmitter and receiver,'' Proc. of ECOC (2002).

  • B. Zhu, L. Nelson, L. Leng, S. Stulz, M. Pedersen, D. Peckham, "Transmission of 1.6 Tb/s (40 ×42.7 Gbps) over transoceanic distance with terrestrial 100-km amplifier spans,'' Proc. of OFC, Paper FN2 (2003).

  • G.C. Gupta, L.L. Wang, O. Mizuhara, R.E. Tench, N.N. Dang, P. Tabaddor and A. Judy, "3.2-Tb/s (40 ch ×80 Gbps) transmission with spectral efficiency of 0.8 b/s/Hz over 21 × 100 km of dispersion-managed high local dispersion fiber using all-Raman amplified spans,'' IEEE Photon. Technol. Lett. 15 (7) 996-998 (July 2003).

    Article  ADS  Google Scholar 

  • C.D. Poole, J.M. Wiesenfeld, D.J. DiGiovanni and A.M. Vengsarkar, "Optical fiber-based dispersion compensation using higher order modes near cutoff,'' J. Lightwave Technol. 12 (10), 1766-1758 (1994).

    Article  ADS  Google Scholar 

  • A.H. Gnauck, L.D. Garrett, Y. Danziger, U. Levy and M. Tur, "Dispersion and dispersion-slope compensation of NZDSF over the entire C band using higher-order-mode fiber,'' Electronics Lett. 36 (23) (9 November 2000).

    Article  Google Scholar 

  • S. Ramachandran, B. Mikkelsen, L.C. Cowsar, M.F. Yan, G. Raybon, L. Boivin, M. Fishteyn, W.A. Reed, P. Wisk, D. Brownlow, R.G. Huff and L. Gruner-Nielsen, "All-fiber, grating-based, higher-order-mode dispersion compensator for broadband compensation and 1000-km transmission at 40-Gbps,'' IEEE Photon. Technol. Lett. 13 (6), 632-634 (2001).

    Article  ADS  Google Scholar 

  • E.L. Goldstein and S. Eskildsen, "Scaling limitations in transparent optical networks due to low-level crosstalk,'' IEEE Photon. Technol. Lett. 7, 93-94 (1995).

    Article  ADS  Google Scholar 

  • C. Rasmussen, F. Liu, R.J.S. Pedersen and B.F. Jorgensen, "Theoretical and experimental studies of the influence of the number of crosstalk signals on the penalty caused by incoherent optical crosstalk,'' Proc. of OFC, Paper TuR5 (1999).

  • S. Ramachandran, J. Nicholson, S. Ghalmi, M. Yan, P. Kristensen, "Measurement of multi-path interference in the coherent cross-talk regime,'' Proc. of OFC, Paper TuK6, pp. 231-232 (2003).

  • S. Ramachandran, G. Raybon, B. Mikkelsen, M. Yan, L. Cowsar and R.-J. Essiambre, "1700 km transmission at 40 Gbit/s with 100 km amplifier spacing enabled by higher-order-mode dispersion compensation,'' Electron. Lett. 37 (22) (25 October 2001).

    Article  Google Scholar 

  • C. Meyer, S. Lobo, D. Le Guen, F. Merlaud, L. Billes, T. Georges, "High spectral efficiency wideband terrestrial ULH RZ transmission over LEAF with realistic industrial margins,'' Proc. of ECOC, Paper 1.1.2 (2002).

  • S. Ramachandran, S. Ghalmi, S. Chandrasekhar, I. Ryazansky, M.F. Yan, F.V. Dimarcello, W.A. Reed, and P. Wisk, "Tunable dispersion compensators utilizing higher order mode fibers,'' IEEE Photon. Technol. Lett. 15 (5), 727-729 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  • L.D. Garrett, M. Eiselt, J. Wiesenfeld, R. Tkach, D. Menashe, U. Levy, . Danziger and M. Tur, "ULH DWDM transmission with HOM-based dispersion compensation,'' Proc. of ECOC, Paper We4.P.98, pp. 752-753 (2003).

  • K.O. Hill, S. Theriault, B. Malo, F. Bilodeau, T. Kitagawa, D.C. Johnson, J. Albert, K. Takiguchi, T. Kataoka and K. Hagimoto, "Chirped in-fibre Bragg grating dispersion compensators: linearisation of dispersion characteristic and demonstration of dispersion compensation in 100 km, 10Gbit/s optical fibre link,'' Electron. Lett. 30 (21), 1755-1756 (1994).

    Article  Google Scholar 

  • R. Kashyap, P.F. Mckee, R.J. Campbell and D.L. Williams, "Novel method of producing all fibre photoinduced chirped gratings,'' Electron. Lett. 30, 996-997 (1994).

    Article  Google Scholar 

  • B.J. Eggleton, P.A. Grug, L. Poladian, K.A. Ahmed and H.-F. Liu, "Experimental demonstration of compression of dispersion optical pulses by reflection from self-chirped optical fibre Bragg gratings,'' Opt. Lett. 19, 877-879 (1994).

    ADS  Google Scholar 

  • J.A.R. Williams, L.A. Everall, I. Bennion and N.J. Doran, "Fiber Bragg grating fabrication for dispersion slope compensation,'' IEEE Photon. Technol. Lett. 8 (9), 1187-1189 (1996).

    Article  ADS  Google Scholar 

  • C. Scheerer, C. Glingener, G. Fischer, M. Bohn and W. Rosenkranz, "Influence of filter group delay ripples on system performance,'' Proc. of ECOC, Paper I-410 (1999).

  • B.J. Eggleton, A. Ahuja, P.S. Westbrook, J.A. Rogers, P. Kuo, T.N. Nielsen and B. Mikkelsen, "Integrated tunable fiber gratings for dispersion management in high-bit rate systems,'' J. Lightwave Technol. 18, 10 (2000).

    Google Scholar 

  • S. Jamal and J.C. Cartledge, "Variation in the performance of multispan 10-Gbps systems due to the group delay ripple of dispersion compensating fiber Bragg gratings,'' J. Lightwave Technol. 20 (1), 28-35 (2002).

    Article  ADS  Google Scholar 

  • H. Yoshimi, Y. Takushima, and K. Kikuchi, "A simple method for estimating the eye-opening penalty caused by group-delay ripple of optical filters,'' Proc. of ECOC, Paper 10.4.4 (2002).

  • K. Ennser, M. Ibsen, M. Durkin, M.N. Zervas and R.I. Laming, "Influence of non-ideal chirped fiber grating characteristics on dispersion cancellation,'' IEEE Photon. Technol. Lett. 10 (10), 1476-1478 (1998).

    Article  ADS  Google Scholar 

  • L.-S. Yan, T. Luo, Q. Yu, Y. Xie and A.E. Willner, "System impact of group-delay ripple in single and cascaded chirped FBGs,'' Proc. of OFC, pp. 700-701 (2002).

  • M.H. Eiselt, C.B. Clausen and R.W. Tkach, "Performance characterization of components with group delay fluctuations,'' IEEE Photon. Technol. Lett. 15 (8), 1076-1078 (2003).

    Article  ADS  Google Scholar 

  • X. Fan, D. Labrake, and J. Brennan, "Chirped fiber grating characterization with phase ripples,'' Proc. of OFC, pp.638-640 (2003).

  • J.C. Cartledge and H. Chen, "Influence of modulator chirp in assessing the performance implications of the group delay ripple of dispersion compensating fiber gratings,'' J. Lightwave Technol. 21 (7), pp. 1621-1628 (2003).

    Article  ADS  Google Scholar 

  • N.S. Bergano, F.W. Kerfoot, and C.R. Davidson, "Margin measurements in optical amplifier systems,'' IEEE Photon. Technol. Lett. 5 (3), 304-306 (1993).

    Article  ADS  Google Scholar 

  • R. Kashyap, A. Ellis, D. Malyon, H.G. Froehlich, A. Swanton and D.J. Armes, "Eight wavelength ×10 Gbps simultaneous dispersion compensation over 100 km single-mode fibre using a single 10 nanometer bandwidth, 1.3 metre long, super-step-chirped fibre bragg grating with a continuous delay of 13.5 nanoseconds,'' Proc. of ECOC, Paper ThB.3.2 (1996).

  • R. Kashyap, H.-G. Froelhich, A. Swanton and D.J. Armes, "1.3 m long super-step-chirped fibre Bragg grating with a continuous delay of 13.5 nm and bandwidth 10 nm for broadband dispersion compensation,'' Electron. Lett. 32, 19 (1996).

    Article  Google Scholar 

  • A.H. Gnauck, L.D. Garrett, F. Forghieri, V. Gusmeroli and D. Scarano, "8 ×20 Gbps 315-km, 8 ×10 Gbps 480-km WDM transmission over conventional fiber using multiple broad-band fiber gratings,'' IEEE Photon. Technol. Lett. 10 (10), 1495-1497 (1998).

    Article  ADS  Google Scholar 

  • L.D. Garrett, A.H. Gnauck, F. Forghieri, V. Gusmeroli and D. Scarano, "16 ×10 Gbps WDM transmission over 840-km SMF using eleven broad-band chirped fiber gratings,'' IEEE Photon. Technol. Lett. 11 (4), 484-486 (1999).

    Article  ADS  Google Scholar 

  • A.H. Gnauck, J.M. Wiesenfeld, L.D. Garrett, R.M. Derosier, F. Forghieri, V. Gusmeroli and D. Scarano, "4 ×40 Gbps 75-km WDM transmission over conventional fiber using a broad-band fiber grating,'' IEEE Photon. Technol. Lett. 11 (11), 1503-1505 (1999).

    Article  ADS  Google Scholar 

  • L.D. Garrett, A.H. Gnauck, R.W. Tkach, B. Agogliati, L. Arcangeli, D. Scarano, V. Gusmeroli, C. Tosetti, G. DiMaio and F. Forghieri, "Ultra-wideband WDM transmission using cascaded chirped fiber gratings,'' Proc. of OFC, Paper PD15 (1999).

  • A.H. Gnauck, J.M. Wiesenfeld, L.D. Garrett, M. Eiselt, F. Forghieri, L. Arcangeli, B. Agogliata, V. Gusmeroli and D. Scarano, "16 ×20-Gbps, 400-km WDM transmission over NZDSF using a slope-compensating fiber-grating module,'' IEEE Photon. Technol. Lett. 12 (4), 437-439 (2000).

    Article  ADS  Google Scholar 

  • L.D. Garrett, A.H. Gnauck, R.W. Tkach, B. Agogliati, L. Argangeli, D. Scarano, V. Gusmeroli, C. Tosetti, G. Di Maio and F. Forghieri, "Cascaded chirped fiber gratings for 18-nm bandwidth dispersion compensation,'' IEEE Photon. Technol. Lett. 12 (3), 356-358 (2000).

    Article  ADS  Google Scholar 

  • J.F. Brennan et al, "Realization of greater than 10-m long chirped fiber Bragg gratings,'' OSA Trends in Optics and Photonics (TOPS) v.33, Bragg gratings, photosensitivity, and poling in glass waveguides, (OSA, Washington DC, 1999), pp. 35-37 (1999).

  • R. Kashyap, A. Swanton and R.P. Smith, "Infinite length fibre gratings,'' Electronics Lett. 35 (21), 14th October 1999.

    Google Scholar 

  • J.F. Brennan III, E. Hernandez, J.A. Valenti, P.G. Sinha, M.R. Matthews, D.E. Elder, G.A. Beauchesne and C.H. Byrd, "Dispersion and dispersion-slope correction with a fiber Bragg grating over the full C-band,'' Proc. of OFC, Paper PD-12 (2001).

  • J.F. Brennan III, M.R. Matthews, W.V. Dower, D.J. Treadwell, W. Wang, J. Porque and X. Fan, "Dispersion correction with a robust fiber grating over the full C-band at 10-Gbps rates with <0.3 dB power penalties,'' IEEE Photon. Technol. Lett. 15 (12), 1722-1724 (2003).

    Article  ADS  Google Scholar 

  • B. Koch and J.F. Brennan III, "Dispersion compensation in an optical communications system with an electro-absorption modulated laser and a fiber grating,'' IEEE Photon. Technol. Lett. 15 (11), 1633-1635 (2003).

    Article  ADS  Google Scholar 

  • Y. Painchaud, H. Chotard, A. Mailloux and Y. Vasseur, "Superposition of chirped fibre Bragg grating for third-order dispersion compensation over 32 WDM channels,'' Electronics Lett. 38, 24 (2002).

    Article  Google Scholar 

  • R. Lachance, S. Lelievre, Y. Painchaud, "50 and 100 GHz multi-channel tunable chromatic dispersion slope compensator,'' Proc. of OFC, Paper TuD3 (2003)

  • S. Lelievre, H. Chotard, S. LaRochelle, K.-M. Feng, S. Lee, R. Khosvarani, S.A. Havstad and J.E. Rothenberg, "Multi-channel dispersion compensation using cascaded FBGs for 10 Gbps transmission,'' Proc. of NFOEC, 2003.

  • F. Ouellette, P.A. Krug, T. Stephens, G. Dhosi and B. Eggleton, "Broadband and WDM dispersion compensation using chirped sampled fibre Bragg gratings,'' Electronics Lett. 31 (11), 899-900 (25 May 1995).

    Article  Google Scholar 

  • M. Ibsen, A. Fu, H. Geiger and R.I. Laming, "All-fibre 4 ×10 Gbit/s WDM link with DFB fibre laser transmitters and single sinc-sampled fibre grating dispersion compensator,'' Electron. Lett. 35, 12 (10 June 1999).

    Article  Google Scholar 

  • W.H. Loh, F.Q. Zhou and J.J. Pan, "Sampled fiber grating based dispersion slope compensator,'' IEEE Photon. Technol. Lett. 11 (100), 1280-1282 (1999).

    Article  MathSciNet  ADS  Google Scholar 

  • X.-F. Chen, C.-C. Fan, Y. Luo, S.-Z. Xie and S. Hu, "Novel flat Multichannel filter based on strongly chirped sampled fiber Bragg grating,'' IEEE Photon. Technol. Lett. 12 (11), 1501-1503 (2000).

    Article  ADS  Google Scholar 

  • H. Li, Y. Sheng, Y. Li, J.E. Rothenberg, "Phased-only sampled fiber bragg gratings for high-channel-count chromatic dispersion compensation,'' J. Lightwave Technol. 21 (9), 2074-2083 (2003).

    Article  ADS  Google Scholar 

  • M. Morin, M. Poulin, A. Mailloux, F. Trepanier and Y. Painchaud, "Full C-band slope-matched dispersion compensation based on a phase sampled Bragg grating,'' Proc. of OFC, Paper WK1 (2004).

  • R.I. Laming, N. Robinson, P.L. Scrivener, M.N. Zervas, S. Barcelos, L. Reekie and J.A. Tucknott,'' A dispersion tunable grating in a 10-Gbps 100-200-km-step index fiber link,'' IEEE Photon. Technol. Lett. 8 (3), 428-430 (1996).

    Article  ADS  Google Scholar 

  • A.E. Willner, K.-M. Feng, J. Cai, S. Lee, J. Peng and H. Sun, "Tunable compensation of channel degrading effects using nonlinearly chirped passive fiber Bragg gratings,'' IEEE J. Quantum Electronics 5 (5), 1298-1311 (1999).

    Article  Google Scholar 

  • T.N. Nielsen, B.J. Eggleton, J.A. Rogers, P.S. Westbrook, P.B. Hansen and T.A. Strasser, "Dynamic post dispersion optimization at 40 Gbps using a tunable fiber Bragg grating,'' IEEE Photon. Technol. Lett. 12 (2), 173-175 (2000).

    Article  ADS  Google Scholar 

  • B.J. Eggleton, A. Ahuja, P.S. Westbrook, J.A. Rogers, P. Kuo, T.N. Nielsen and B. Mikkelsen, "Integrated tunable fiber gratings for dispersion management in high-bit rate systems,'' J. Lightwave Technol. 18 (10), 1418-1432 (2000).

    Article  ADS  Google Scholar 

  • R.J. Nuyts, Y.K. Park, P. Gallion, "Dispersion equalization of a 10 Gbps Repeatered transmission system using dispersion compensating fibers,'' J. Lightwave Technol. 15 (1), 31-42 (1997).

    Article  ADS  Google Scholar 

  • J.-X. Cai, K.-M. Feng, A.E. Willner, V. Grubsky, D.S. Sarodubov and J. Feinberg, "Sampled nonlinearly-chirped fiber-Bragg grating for the tunable dispersion compensation of many WDM channels simultaneously,'' Proc. of OFC, Paper FA7-1, pp.20-22 (1999).

  • Y. Xie, S. Lee, Z. Pan, J.-X. Cai, A.E. Willner, V. Grubsky, D.S. Starodubov, E. Salik and J. Feinberg, "Tunable compensation of the dispersion slope mismatch in dispersion-managed systems using a sampled nonlinearly chirped FBG,'' IEEE Photon. Technol. Lett. 12 (10), 1417-1419 (2000).

    Article  ADS  Google Scholar 

  • J.-X. Cai, K.-M. Feng, A.E. Willner, V. Grubsky, D.S. Starodubov and J. Feinberg, "Simultaneous tunable dispersion compensation of many WDM channels using a sampled nonlinearly chirped fiber Bragg grating,'' IEEE Photon. Technol. Lett. 11 (11), 1455-1457 (1999).

    Article  ADS  Google Scholar 

  • D. Gauden, E. Goyat, A. Mugnier, P. Lesueur, P. Yvernault and D. Pureur, "A tunable four-channel fiber Bragg grating dispersion compensator,'' IEEE Photon. Technol. Lett. 15 (10), 1387-1389 (2003).

    Article  ADS  Google Scholar 

  • Y. Li, B. Zhu, C. Soccolich, L. Nelson, N. Litchinitser, G. Hancin, "Multi-chanel high-performance tunable dispersion compensator for 40 Gbps transmission systems,'' Proc. of OFC, Paper ThL4 (2003).

  • J.C. Knight, T.A. Birks, P.S.J. Russell and D.M. Atkins, "All-silica single-mode optical fiber with photonic crystal cladding,'' Opt. Lett. 21, 1547-1549 (1996).

    Article  ADS  Google Scholar 

  • G. Renversez, B. Kuhlmey and R. McPhedran, "Dispersion management with microstructured optical fibers: ultraflattened chromatic dispersion with low losses,'' Opt. Lett. 28 (12), 989-991 (2003).

    ADS  Google Scholar 

  • T.D. Engeness, M. Ibanescu, S.G. Johnson, O. Weisberg, M. Skorobogatiy, S. Jacobs and Y. Fink, "Dispersion tailoring and compensation by modal interactions in OmniGuide fibers,'' Opt. Express 11 (10) , 1175-1196 (2003).

    Article  ADS  Google Scholar 

  • L.P. Shen, W.-P. Huang, G.X. Chen and S.S. Jian, "Design and optimization of photonic crystal fibers for broad-band dispersion compensation,'' IEEE Photon. Technol. Lett. 15 (4), 540-542 (2003).

    Article  ADS  Google Scholar 

  • F. Poli, A. Cucinotta, S. Selleri and A.H. Bouk, "Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers,'' IEEE Photon. Technol. Lett. 16 (4), 1065-1067 (2004).

    Article  ADS  Google Scholar 

  • S. Johnson, "The design and modeling of microstructured fiber,'' Proc. of OFC, Tutorial WA4 (2004).

  • S. Choi, W. Shin and K. Oh, "Higher-order-mode dispersion compensation technique based on mode converter using hollow optical fiber,'' Proc. of OFC, Paper WA6, pp. 217-218 (2002).

  • C.K. Madsen and G. Lenz, "Optical all-pass filters for phase response design with applications for dispersion compensation,'' Photon. Technol. Lett. 10 (7), 994-996 (July 1998).

    Article  ADS  Google Scholar 

  • G. Lenz and C.K. Madsen, "General optical all-pass filter structures for dispersion control in WDM systems,'' J. Lightwave Technol. 17 (7), 1248-1254 (July 1999).

    Article  ADS  Google Scholar 

  • C.K. Madsen and J.H. Zhao, {\it Optical Filter Design and Analysis (New York: Wiley, 1999).

  • M. Eiselt, "Does spectrally periodic dispersion compensation reduce non-linear effects,'' Proc. of ECOC, Paper TuC1.2 (1999).

  • L.F. Mollenauer, A. Grant, L. Xiang, W. Xing, X. Chongjin and K. Inuk, "Experimental test of dense WDM using novel, periodic-group-delay-complemented dispersion compensation and dispersion managed solitons: transmission to beyond 20,000 km,'' Proc. of CLEO, pp. 2121-2122 (2003).

  • L. Mollenauer, X. Wei, X. Liu, A. Grant, and C. Xie, "Reduction of timing jitter in dense WDM by the use of periodic group delay dispersion compensators,'' Center for Nonlinear Studies Workshop: "Advances in Raman-Based, High-Speed Photonics'' Los Alamos National Laboratory, February 3, 2003).

  • A.H. Gnauck, C.R. Giles, L.J. Cimini, Jr., J. Stone, L.W. Stulz, S.K. Korotky and J.J. Veselka, "8-Gbps-130 km transmission experiment using Er-doped fiber preamplifier and optical dispersion equalization,'' Photon. Technol. Lett. 3 (12), 1147-1149 (December 1991).

    Article  ADS  Google Scholar 

  • D. Garthe, J. Ip, P. Colbourne, R.E. Epworth, W.S. Lee and A. Hadjifotiou, "Low-loss dispersion equalizer operable over the entire erbium window,'' Electron. Lett. 32 (4), 371-373 (1996).

    Article  Google Scholar 

  • C.K. Madsen, G. Lenz, A.J. Bruce, M.A. Cappuzzo, L.T. Gomez, T.N. Nielsen, L.E. Adams and I. Brenner, "An all-pass filter dispersion compensator using planar waveguide ring resonators,'' Proc. of OFC 1999, Paper FE6, pp. 99-101 (1999).

  • C.K. Madsen, J.A. Walker, J.E. Ford, K.W. Goossen and G. Lenz, "A tunable dispersion compensating MARS all-pass filter,'' Proc. of ECOC, paper WeB1.3, pp. II-20 and II-21 (1999).

  • J.E. Ford, J.A. Walker, D.S. Greywall and K.W. Goossen, "Micromechanical fiber-optic attenuator with 3um response,'' J. Lightwave Technol. 16 (9), 1663-1670 (1998).

    Article  ADS  Google Scholar 

  • C.K. Madsen and G. Lenz, "A multi-channel dispersion slope compensating optical allpass filter,'' Proc. of OFC, Paper WF5 (2000).

  • F. Horst, C. Berendsen, R. Beyeler, G.-L. Bona, R. Germann, H.W.M. Salemink and D. Wiesmann, "Tunable ring resonator dispersion compensators realized in high-refractive-index contrast SiON technology,'' Proc. of ECOC 2000, Paper PD2.2 (2000).

  • J.J. Fells, S.E. Kanellopoulos, P.J. Bennett, V. Baker, H.F.M. Priddle, W.S. Lee, A.J. Collar, C.B. Rogers, D.P. Goodchild, R. Feced, B.J. Pugh, S.J. Clements and A. Hadjifotiou, "Twin fiber grating tunable dispersion compensator,'' IEEE Photon. Technol. Lett. 13 (9), 984-986 (2001).

    Article  ADS  Google Scholar 

  • D.J. Moss, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran and C.A. Hulse, "Tunable dispersion and dispersion slope compensators for 10 Gbps using all-pass multicavity etalons,'' IEEE Photon. Technol. Lett. 15 (5), 730-732 (May 2003).

    Article  ADS  Google Scholar 

  • L.M. Lunardi, D.J. Moss, S. Chandrasekhar, L.L. Buhl, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran and C.A. Hulse, "Tunable dispersion compensation at 40-Gbps using a multicavity etalon all-pass filter with NRZ, RZ and CS-RZ modulation,'' J. Lightwave Technol. 20 (12), 2136-2143 (2002).

    Article  ADS  Google Scholar 

  • X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, I. Khrushchev and I. Bennion, "Tunable dispersion compensator based on distributed Gires-Tournois etalons,'' IEEE Photon. Technol. Lett. 15 (8), 1111-1113 (2003).

    Article  ADS  Google Scholar 

  • X. Shu, K. Chisholm and K. Sugden, "Design and realization of dispersion slope compensators using distributed Gires-Tournois etalons,'' IEEE Photon. Technol. Lett. 16 (4), 1092-1094 (2004).

    Article  ADS  Google Scholar 

  • D. Yang, C. Lin, W. Chen and G. Barbarossa, "Fiber dispersion and dispersion slope compensation in a 40-channel 10-Gbps 3200-km transmission experiment using cascaded single-cavity Gires-Tournois etalons,'' IEEE Photon. Technol. Lett. 16 (1), 299-301 (2004).

    Article  ADS  Google Scholar 

  • M. Shirasaki, "Chromatic-dispersion compensator using virtually imaged phased array,'' IEEE Photon. Technol. Lett. 9, 12 (1997).

    Article  Google Scholar 

  • M. Shirasaki, Y. Kawahata, S. Cao, H. Ooi, N. Mitasura, H. Isono, g. Ishikawa, G. Barbarossa, C. Yang and C. Lin, "Variable dispersion compensator using the virtually imaged phased array (VIPA) for 40-Gbit/s WDM transmission systems,'' Proc. of ECOC, Paper PD-23 (2000).

  • L.D. Garrett, A.H. Gnauck, M.H. Eiselt, R.W. Tkach, C. Yang, C. Mao, and S. Cao, "Demonstration of virtually-imaged phased-array device for tunable dispersion compensation in 16 ×10 Gbps WDM transmission over 480 km standard fiber,'' Proc. of OFC, Paper PD7 (2000).

  • H. Ooi, K. Nakamura, Y. Akiyama, T. Takahara, J. Kumasako, J.C. Rasmussen, T. Terahara, Y. Kawahata, H. Isono, G. Ishikawa and N. Yamaguchi, "3.5-Tbit/s (43-Gbit/s ×88 ch) transmission over 600-km NZDSF with VIPA variable dispersion compensators,'' Proc. of OFC, Paper ThX3 (2002).

  • G. Kanter, A.K. Samal, and A. Gandhi, "Electronic dispersion compensation for extended reach,'' Proc. of OFC, Invited Paper TuG1 (2004).

  • D. Castagnozzi, "Digital signal processing and electronic equalization of ISI,'' Proc. of OFC, Invited Paper WM6 (2004).

  • M. Nakamura, H. Nosaka, M. Ida, K. Kurishima, M. Tokumitsu, "Electrical PMD equalizer ICs for a 40-Gbps transmission,'' Proc. of OFC, Paper TuG4 (2004).

  • C. Fludger, J. Whiteaway, P. Anslow, "Electronic equalization for low cost 10 Gbit/s directly modulated systems,'' Proc. of OFC, Paper WM7 (2004).

  • J.H. Winters and R.D. Gitlin, "Electrical signal processing techniques in long-haul, fiber-optic systems," IEEE Trans. Commun. 38, 1439-1453 (1990).

    Article  Google Scholar 

  • J.H. Winters and S. Kasturia, "Adaptive nonlinear cancellation for high-speed fiber-optic systems,'' J. Lightwave Technol. 10, 971-977 (1992).

    Article  ADS  Google Scholar 

  • J. Poirrier, A.G. Gnauck and J.H. Winters, "Experimental nonlinear cancellation of polarization-mode dispersion,'' Proc. of OFC, Paper ThH4 (2000).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lara Denise Garrett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garrett, L. Survey of systems experiments demonstrating dispersion compensation technologies. J Optic Comm Rep 3, 340–398 (2006). https://doi.org/10.1007/s10297-006-0075-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10297-006-0075-3

Keywords

Navigation