Skip to main content
Log in

Deletion of PHO13 improves aerobic l-arabinose fermentation in engineered Saccharomyces cerevisiae

  • Bioenergy/Biofuels/Biochemicals - Short Communication
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Pentose sugars are increasingly being used in industrial applications of Saccharomyces cerevisiae. Although l-arabinose is a highlighted pentose that has been identified as next-generation biomass, arabinose fermentation has not yet undergone extensive development for industrial utilization. In this study, we integrated a heterologous fungal arabinose pathway with a deletion of PHO13 phosphatase gene. PHO13 deletion increased arabinose consumption rate and specific ethanol productivity under aerobic conditions and consequently depleted sedoheptulose by activation of the TAL1 gene. Global metabolite profiling indicated upregulation of the pentose phosphate pathway and downstream effects such as trehalose accumulation and downregulation of the TCA cycle. Our results suggest that engineering of PHO13 has ample potential for arabinose conversion to ethanol as an industrial source for biofuels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

XR:

d-xylose reductase

XDH:

Xylitol dehydrogenase

XI:

d-xylose isomerase

XK:

Xylulokinase

S. cerevisiae :

Saccharomyces cerevisiae

OD600 :

Optical density at 600 nm

RT-qPCR:

Real-Time quantitative Polymerase Chain Reaction

n.d.:

Not detected

Y Ethanol :

Ethanol yield

P Ethanol :

Specific ethanol productivity

DCW:

Dried cell weight

References

  1. Becker J, Boles E (2003) A modified Saccharomyces cerevisiae strain that consumes l-arabinose and produces ethanol. Appl Environ Microbiol 69:4144–4150. https://doi.org/10.1128/aem.69.7.4144-4150.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bera AK, Sedlak M, Khan A, Ho NW (2010) Establishment of l-arabinose fermentation in glucose/xylose co-fermenting recombinant Saccharomyces cerevisiae 424A(LNH-ST) by genetic engineering. Appl Microbiol Biotechnol 87:1803–1811. https://doi.org/10.1007/s00253-010-2609-0

    Article  CAS  PubMed  Google Scholar 

  3. Bommer GT, Baldin F, Van Schaftingen E (2016) Accumulation of metabolic side products might favor the production of ethanol in Pho13 knockout strains. Microb Cell 3:495. https://doi.org/10.15698/mic2016.10.532

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chen Y, Liu Q, Chen X, Wu J, Guo T, Zhu C, Ying H (2015) Redirecting metabolic flux in Saccharomyces cerevisiae through regulation of cofactors in UMP production. J Ind Microbiol Biotechnol 42:577–583. https://doi.org/10.1007/s10295-014-1536-y

    Article  CAS  PubMed  Google Scholar 

  5. Gietz RD, Schiestl RH (2007) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2:31–34

    Article  CAS  Google Scholar 

  6. Hahn-Hägerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF (2007) Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74:937–953

    Article  Google Scholar 

  7. Holwerda EK, Worthen RS, Kothari N, Lasky RC, Davison BH, Fu C, Wang Z-Y, Dixon RA, Biswal AK, Mohnen D (2019) Multiple levers for overcoming the recalcitrance of lignocellulosic biomass. Biotechnol Biofuels 12:15. https://doi.org/10.1186/s13068-019-1353-7

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hong K-K, Nielsen J (2012) Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell Mol Life Sci 69:2671–2690. https://doi.org/10.1007/s00018-012-0945-1

    Article  CAS  PubMed  Google Scholar 

  9. Kim SR, Xu H, Lesmana A, Kuzmanovic U, Au M, Florencia C, Oh EJ, Zhang G, Kim KH, Jin YS (2015) Deletion of PHO13, encoding haloacid dehalogenase type IIA phosphatase, results in upregulation of the pentose phosphate pathway in Saccharomyces cerevisiae. Appl Environ Microbiol 81:1601–1609. https://doi.org/10.1128/AEM.03474-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kwak S, Jin Y-S (2017) Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: a review and perspective. Microb Cell Fact 16:82. https://doi.org/10.1186/s12934-017-0694-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee D-W, Hong Y-H, Choe E-A, Lee S-J, Kim S-B, Lee H-S, Oh J-W, Shin H-H, Pyun Y-R (2005) A thermodynamic study of mesophilic, thermophilic, and hyperthermophilic l-arabinose isomerases: the effects of divalent metal ions on protein stability at elevated temperatures. FEBS Lett 579:1261–1266

    Article  CAS  Google Scholar 

  12. Richard P, Putkonen M, Väänänen R, Londesborough J, Penttilä M (2002) The missing link in the fungal l-arabinose catabolic pathway, identification of the l-xylulose reductase gene. Biochemistry 41:6432–6437

    Article  CAS  Google Scholar 

  13. Richard P, Verho R, Putkonen M, Londesborough J, Penttila M (2003) Production of ethanol from -arabinose by containing a fungal -arabinose pathway. FEMS Yeast Res 3:185–189. https://doi.org/10.1016/s1567-1356(02)00184-8

    Article  CAS  PubMed  Google Scholar 

  14. Shin M, Kim J-W, Ye S, Kim S, Jeong D, Lee DY, Kim JN, Jin Y-S, Kim KH, Kim SR (2019) Comparative global metabolite profiling of xylose-fermenting Saccharomyces cerevisiae SR8 and Scheffersomyces stipitis. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-019-09829-5

    Article  PubMed  Google Scholar 

  15. Toivari MH, Aristidou A, Ruohonen L, Penttilä M (2001) Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability. Metab Eng 3:236–249

    Article  CAS  Google Scholar 

  16. Wang C, Shen Y, Zhang Y, Suo F, Hou J, Bao X (2013) Improvement of l-arabinose fermentation by modifying the metabolic pathway and transport in Saccharomyces cerevisiae. Biomed Res Int 2013:461204. https://doi.org/10.1155/2013/461204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wiedemann B, Boles E (2008) Codon-optimized bacterial genes improve l-Arabinose fermentation in recombinant Saccharomyces cerevisiae. Appl Environ Microbiol 74:2043–2050. https://doi.org/10.1128/AEM.02395-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wisselink HW, Toirkens MJ, del Rosario Franco Berriel M, Winkler AA, van Dijken JP, Pronk JT, van Maris AJ (2007) Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of l-arabinose. Appl Environ Microbiol 73:4881–4891. https://doi.org/10.1128/aem.00177-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xu H, Kim S, Sorek H, Lee Y, Jeong D, Kim J, Oh EJ, Yun EJ, Wemmer DE, Kim KH (2016) PHO13 deletion-induced transcriptional activation prevents sedoheptulose accumulation during xylose metabolism in engineered Saccharomyces cerevisiae. Metab Eng 34:88–96. https://doi.org/10.1016/j.ymben.2015.12.007

    Article  CAS  PubMed  Google Scholar 

  20. Ye S, Kim J-w, Kim SR (2019) Metabolic engineering for improved fermentation of l-arabinose. J Microbiol Biotechnol 29:339–346. https://doi.org/10.4014/jmb.1812.12015

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was carried out with support from the “Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ01279801)” Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Minhye Shin or Soo Rin Kim.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2713 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, S., Jeong, D., Shon, J. et al. Deletion of PHO13 improves aerobic l-arabinose fermentation in engineered Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 46, 1725–1731 (2019). https://doi.org/10.1007/s10295-019-02233-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-019-02233-y

Keywords

Navigation