Skip to main content

Advertisement

Log in

Redirecting metabolic flux in Saccharomyces cerevisiae through regulation of cofactors in UMP production

  • Fermentation, Cell Culture and Bioengineering
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Although it is generally known that cofactors play a major role in the production of different fermentation products, their role has not been thoroughly and systematically studied. To understand the impact of cofactors on physiological functions, a systematic approach was applied, which involved redox state analysis, energy charge analysis, and metabolite analysis. Using uridine 5′-monophosphate metabolism in Saccharomyces cerevisiae as a model, we demonstrated that regulation of intracellular the ratio of NADPH to NADP+ not only redistributed the carbon flux between the glycolytic and pentose phosphate pathways, but also regulated the redox state of NAD(H), resulting in a significant change of ATP, and a significantly altered spectrum of metabolic products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bailey JE (1991) Toward a science of metabolic engineering. Science 252:1668–1675

    Article  CAS  PubMed  Google Scholar 

  2. Bakker BM, Overkamp KM, van Maris AJ et al (2001) Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiol Rev 25:15–37

    Article  CAS  PubMed  Google Scholar 

  3. Berrios-Rivera SJ, Bennett GN, San KY (2003) The effect of carbon sources and lactate dehydrogenase deletion on 1,2-propanediol production in Escherichia coli. Metab Eng 4:217–229

    Article  Google Scholar 

  4. Berrios-Rivera SJ, Bennett GN, San KY (2003) The effect of increasing NADH availability on the redistribution of metabolic fluxes in Escherichia coli chemostat cultures. Metab Eng 4:230–237

    Article  Google Scholar 

  5. Berrios-Rivera SJ, San KY, Bennett GN (2003) The effect of NAPRTase overexpression on the total levels of NAD+, the NADH-NAD+ ratio, and the distribution of metabolites in Escherichia coli. Metab Eng 4:238–247

    Article  Google Scholar 

  6. Chen Y, Li SY, Xiong J et al (2010) The mechanisms of citrate on regulating the distribution of carbon flux in the biosynthesis of uridine 5′-monophosphate by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 86:75–81

    Article  CAS  PubMed  Google Scholar 

  7. DeLuna A, Avendano A, Riego L et al (2001) NADP-glutamate dehydrogenase isoenzymes of Saccharomyces cerevisiae. Purification, kinetic properties, and physiological roles. J Biol Chem 276:43775–43783

    Article  CAS  PubMed  Google Scholar 

  8. Du CY, Yan H, Zhang YP et al (2006) Use oxidoreduction potentials an indicator to regulate 1,3-propanediol fermentation by Klebsiella pneumoniae. Appl Microbiol Biotechnol 69:554–563

    Article  CAS  PubMed  Google Scholar 

  9. Dos Santos MM, Raghevendran V, Kotter P et al (2004) Manipulation of malic enzyme in Saccharomyces cerevisiae for increasing NADPH production capacity aerobically in different cellular compartments. Metab Eng 6:352–363

    Article  Google Scholar 

  10. Garrigues C, Loubiere P, Lindley ND et al (1997) Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: predominant role of the NADH/NAD+ ratio. J Bacteriol 179:5282–5287

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Heux S, Cachon R, Dequin S (2006) Cofactor engineering in Saccharomyces cerevisiae: expression of a H(2)O-forming NADH oxidase and impact on redox metabolism. Metab Eng 8:303–314

    Article  CAS  PubMed  Google Scholar 

  12. Jol SJ, Kümmel A, Terzer M et al (2012) System-level insights into yeast metabolism by thermodynamic analysis of elementary flux modes. PLoS Comput Biol. doi:10.1371/journal.pcbi.1002415

    PubMed Central  PubMed  Google Scholar 

  13. Kamada N, Yasuhara A, Ikeda M (2003) Significance of the non-oxidative route of the pentose phosphate pathway for supplying carbon to the purine-nucleotide pathway in Corynebacterium ammoniagenes. J Ind Microbiol Biotechnol 30:129–132

    Article  CAS  PubMed  Google Scholar 

  14. Larsson C, Nilsson A, Blomberg A et al (1997) Glycolytic flux is conditionally correlated with ATP concentration in Saccharomyces cerevisiae: a chemostat study under carbon- or nitrogen-limiting conditions. J Bacteriol 179:7243–7250

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Liu W, Wang P (2007) Cofactor regeneration for sustainable enzymatic biosynthesis. Biotechnol Adv 25:369–384

    Article  CAS  PubMed  Google Scholar 

  16. Poulsen R, Nohr J, Douthwaite S et al (2005) Increased NADPH concentration obtained by metabolic engineering of the pentose phosphate pathway in Aspergillus niger. FEBS J 72:1313–1325

    Article  Google Scholar 

  17. Remize F, Barnavon L, Dequin S (2001) Glycerol export and glycerol-3-phosphate dehydrogenase, but not glycerol phosphatases, are rate limiting for glycerol production in Saccharomyces cerevisiae. Metab Eng 3:301–312

    Article  CAS  PubMed  Google Scholar 

  18. Sánchez AM, Bennett GN, San KY (2005) Effect of different levels of NADH availability on metabolic fluxes of Escherichia coli chemostat cultures in defined medium. J Biotechnol 117:395–405

    Article  PubMed  Google Scholar 

  19. Stephanopoulos GN, Vallino JJ (1991) Network rigidity and metabolic engineering in metabolite overproduction. Science 252:1675–1681

    Article  CAS  PubMed  Google Scholar 

  20. Vaseghi S, Baumeister A, Rizzi M, Reuss M (1999) In vivo dynamics of the pentose phosphate pathway in Saccharomyces cerevisiae. Metab Eng 1:128–140

    Article  CAS  PubMed  Google Scholar 

  21. Verho R, Londesborough J, Penttilä M et al (2003) Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae. Appl Environ Microbiol 10:5892–5897

    Article  Google Scholar 

  22. Wang X, Wang XW, Yin MX et al (2007) Production of uridine 5′-monophosphate by Corynebacterium ammoniagenes ATCC 6872 using a statistically improved biocatalytic process. Appl Microbiol Biotechnol 76:321–328

    Article  CAS  PubMed  Google Scholar 

  23. Zhang YP, Huang ZH, Dua CH et al (2009) Introduction of an NADH regeneration system into Klebsiella oxytoca leads to an enhanced oxidative and reductive metabolism of glycerol. Metab Eng 11:101–106

    Article  PubMed  Google Scholar 

  24. Zhang Z, Yu J, Stanton RC (2000) A method for determination of pyridine nucleotides using a single extract. Anal Biochem 285:163–167

    Article  CAS  PubMed  Google Scholar 

  25. Zhou JW, Liu LM, Shi ZP et al (2009) ATP in current biotechnology: Regulation, applications and perspectives. Biotechnol Adv 27:94–101

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Outstanding Youth Foundation of China (Grant No. 21025625), the National High-Tech Research and Development Program of China (863) (Grant No. 2012AA021200), the National Basic Research Program of China (973) (Grant No. 2011CBA00806), the National Key Technology R&D Program (2012BAI44G01), the Program of Changjiang Scholars and Innovative in University (Grant No. IRT1066), the National Natural Science Foundation of China, the Youth Program (Grant No. 21106070), the Jiangsu Provincial Natural Science Foundation of China (Grant No. SBK 201150207), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the State Key Laboratory of Motor Vehicle Biofuel Technology (Grant No. 2013003)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanjie Ying.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Liu, Q., Chen, X. et al. Redirecting metabolic flux in Saccharomyces cerevisiae through regulation of cofactors in UMP production. J Ind Microbiol Biotechnol 42, 577–583 (2015). https://doi.org/10.1007/s10295-014-1536-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-014-1536-y

Keywords

Navigation