Skip to main content
Log in

Genetic tools for reliable gene expression and recombineering in Pseudomonas putida

  • Metabolic Engineering and Synthetic Biology - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Pseudomonas putida is a promising bacterial host for producing natural products, such as polyketides and nonribosomal peptides. In these types of projects, researchers need a genetic toolbox consisting of plasmids, characterized promoters, and techniques for rapidly editing the genome. Past reports described constitutive promoter libraries, a suite of broad host range plasmids that replicate in P. putida, and genome-editing methods. To augment those tools, we have characterized a set of inducible promoters and discovered that IPTG-inducible promoter systems have poor dynamic range due to overexpression of the LacI repressor. By replacing the promoter driving lacI expression with weaker promoters, we increased the fold induction of an IPTG-inducible promoter in P. putida KT2440 to 80-fold. Upon discovering that gene expression from a plasmid was unpredictable when using a high-copy mutant of the BBR1 origin, we determined the copy numbers of several broad host range origins and found that plasmid copy numbers are significantly higher in P. putida KT2440 than in the synthetic biology workhorse, Escherichia coli. Lastly, we developed a λRed/Cas9 recombineering method in P. putida KT2440 using the genetic tools that we characterized. This method enabled the creation of scarless mutations without the need for performing classic two-step integration and marker removal protocols that depend on selection and counterselection genes. With the method, we generated four scarless deletions, three of which we were unable to create using a previously established genome-editing technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Anderson J (2006) Anderson promoter library registry of standard biological parts. http://partsregistry.org/Promoters/Catalog/Anderson. Accessed 1 Sept 2017

  2. Antoine R, Locht C (1992) Isolation and molecular characterization of a novel broad-host-range plasmid from Bordetella bronchiseptica with sequence similarities to plasmids from gram-positive organisms. Mol Microbiol 6:1785–1799. https://doi.org/10.1111/j.1365-2958.1992.tb01351.x

    Article  PubMed  CAS  Google Scholar 

  3. Aparicio T, Jensen SI, Nielsen AT et al (2016) The Ssr protein (T1E_1405) from Pseudomonas putida DOT-T1E enables oligonucleotide-based recombineering in platform strain P. putida EM42. Biotechnol J 11:1309–1319. https://doi.org/10.1002/biot.201600317

    Article  PubMed  CAS  Google Scholar 

  4. Aparicio T, de Lorenzo V, Martínez-García E (2017) CRISPR/Cas9-based counterselection boosts recombineering efficiency in Pseudomonas putida. Biotechnol J. https://doi.org/10.1002/biot.201700161

    Article  PubMed  Google Scholar 

  5. Bagdasarian MM, Lurz R, Rückert B et al (1981) Specific-purpose plasmid cloning vectors II. Broad host range, high copy number, RSF1010-derived vectors, and a host-vector system for gene cloning in Pseudomonas. Gene 16:237–247. https://doi.org/10.1016/0378-1119(81)90080-9

    Article  PubMed  CAS  Google Scholar 

  6. Bassalo MC, Garst AD, Halweg-Edwards AL et al (2016) Rapid and efficient one-step metabolic pathway integration in E. coli. ACS Synth Biol. https://doi.org/10.1021/acssynbio.5b00187

    Article  PubMed  Google Scholar 

  7. Beckwith JR, Zipser D (1970) The lactose operon. Cold Spring Harbor, New York

  8. Bentley WE, Mirjalili N, Andersen DC et al (1990) Plasmid-encoded protein: the principal factor in the “metabolic burden” associated with recombinant bacteria. Biotechnol Bioeng 35:668–681. https://doi.org/10.1002/bit.260350704

    Article  PubMed  CAS  Google Scholar 

  9. De Bernardez ER, Dhurjati PS (1987) Effect of a broad-host range plasmid on growth dynamics of Escherichia coli and Pseudomonas putida. Biotechnol Bioeng 29:558–565. https://doi.org/10.1002/bit.260290504

    Article  PubMed  Google Scholar 

  10. Brendel N, Partida-Martinez LP, Scherlach K, Hertweck C (2007) A cryptic PKS–NRPS gene locus in the plant commensal Pseudomonas fluorescens Pf-5 codes for the biosynthesis of an antimitotic rhizoxin complex. Org Biomol Chem 5:2211–2213. https://doi.org/10.1039/b707762a

    Article  PubMed  CAS  Google Scholar 

  11. Calero P, Jensen SI, Nielsen AT (2016) Broad-host-range ProUSER vectors enable fast characterization of inducible promoters and optimization of p-coumaric acid production in Pseudomonas putida KT2440. ACS Synth Biol 5:741–753. https://doi.org/10.1021/acssynbio.6b00081

    Article  PubMed  CAS  Google Scholar 

  12. Chai Y, Shan S, Weissman KJ et al (2012) Heterologous expression and genetic engineering of the tubulysin biosynthetic gene cluster using red/ET recombineering and inactivation mutagenesis. Chem Biol 19:361–371. https://doi.org/10.1016/j.chembiol.2012.01.007

    Article  PubMed  CAS  Google Scholar 

  13. Chiang YM, Chang SL, Oakley BR, Wang CCC (2011) Recent advances in awakening silent biosynthetic gene clusters and linking orphan clusters to natural products in microorganisms. Curr Opin Chem Biol 15:137–143. https://doi.org/10.1016/j.cbpa.2010.10.011

    Article  PubMed  CAS  Google Scholar 

  14. Cobb RE, Wang Y, Zhao H (2015) High-efficiency multiplex genome editing of streptomyces species using an engineered CRISPR/Cas system. ACS Synth Biol 4:723–728. https://doi.org/10.1021/sb500351f

    Article  PubMed  CAS  Google Scholar 

  15. Davison J (2002) Genetic tools for pseudomonads, rhizobia, and other gram-negative bacteria. Biotechniques 32:386–401

    Article  PubMed  CAS  Google Scholar 

  16. Durland RH, Helinski DR (1990) Replication of the broad-host-range plasmid RK2: direct measurement of intracellular concentrations of the essential TrfA replication proteins and their effect on plasmid copy number. J Bacteriol 172:3849–3858. https://doi.org/10.1016/j.mimet.2011.10.007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Durland RH, Toukdarian A, Fang F, Helinski DR (1990) Mutations in the trfA replication gene of the broad-host-range plasmid RK2 result in elevated plasmid copy numbers. J Bacteriol 172:3859–3867

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Elmore JR, Furches A, Wolff GN et al (2017) Development of a high efficiency integration system and promoter library for rapid modification of Pseudomonas putida KT2440. Metab Eng Commun 5:1–8. https://doi.org/10.1016/j.meteno.2017.04.001

    Article  PubMed  PubMed Central  Google Scholar 

  19. Graf N, Altenbuchner J (2013) Functional characterization and application of a tightly regulated MekR/P mekA expression system in Escherichia coli and Pseudomonas putida. Appl Microbiol Biotechnol 97:8239–8251. https://doi.org/10.1007/s00253-013-5030-7

    Article  PubMed  CAS  Google Scholar 

  20. Graf N, Altenbuchner J (2011) Development of a method for markerless gene deletion in Pseudomonas putida. Appl Environ Microbiol 77:5549–5552. https://doi.org/10.1128/AEM.05055-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Graf N, Altenbuchner J (2014) Genetic engineering of Pseudomonas putida KT2440 for rapid and high-yield production of vanillin from ferulic acid. Appl Microbiol Biotechnol 98:137–149. https://doi.org/10.1007/s00253-013-5303-1

    Article  PubMed  CAS  Google Scholar 

  22. Hansen LH, Sørensen SJ, Jensen LB (1997) Chromosomal insertion of the entire Escherichia coli lactose operon, into two strains of Pseudomonas, using a modified mini-Tn5 delivery system. Gene 186:167–173. https://doi.org/10.1016/S0378-1119(96)00688-9

    Article  PubMed  CAS  Google Scholar 

  23. Hashimoto J, Stevenson B, Schmidt TM (2002) Rates and consequences of recombination between ribosomal RNA operons. J Bacteriol 185:966–972. https://doi.org/10.1128/JB.185.3.966

    Article  Google Scholar 

  24. Hoang TT, Karkhoff-Schweizer RR, Kutchma AJ, Schweizer HP (1998) A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212:77–86. https://doi.org/10.1016/S0378-1119(98)00130-9

    Article  PubMed  CAS  Google Scholar 

  25. Hoffmann J, Altenbuchner J (2015) Functional characterization of the mannitol promoter of Pseudomonas fluorescens DSM 50106 and its application for a mannitol-inducible expression system for Pseudomonas putida KT2440. PLoS One 10:1–22. https://doi.org/10.1371/journal.pone.0133248

    Article  CAS  Google Scholar 

  26. Itoh N, Kawanami T, Nitta C et al (2003) Characterization of pNI10 plasmid in Pseudomonas, and the construction of an improved Escherichia and Pseudomonas shuttle vector, pNUK73. Appl Microbiol Biotechnol 61:240–246. https://doi.org/10.1007/s00253-002-1195-1

    Article  PubMed  CAS  Google Scholar 

  27. Itoh Y, Soldati L, Leisinger T, Haas D (1988) Low- and intermediate-copy-number cloning vectors based on the Pseudomonas plasmid pVS1. Antonie Van Leeuwenhoek 54:567–573. https://doi.org/10.1007/BF00588392

    Article  PubMed  CAS  Google Scholar 

  28. Jain A, Srivastava P (2013) Broad host range plasmids. FEMS Microbiol Lett 348:87–96. https://doi.org/10.1111/1574-6968.12241

    Article  PubMed  CAS  Google Scholar 

  29. Jeffrey V, Joachim M (1991) New pUC-derived cloning vectors with different selectable markers and DNA replication origins. Gene 100:189–194. https://doi.org/10.1016/0378-1119(91)90365-I

    Article  Google Scholar 

  30. Jeske M, Altenbuchner J (2010) The Escherichia coli rhamnose promoter rhaPBAD is in Pseudomonas putida KT2440 independent of Crp-cAMP activation. Appl Microbiol Biotechnol 85:1923–1933. https://doi.org/10.1007/s00253-009-2245-8

    Article  PubMed  CAS  Google Scholar 

  31. Jiang W, Bikard D, Cox D et al (2013) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31:233–239. https://doi.org/10.1038/nbt.2508

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA—guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–822

    Article  PubMed  CAS  Google Scholar 

  33. Khlebnikov A, Datsenko KA, Skaug T et al (2001) Homogeneous expression of the PBAD promoter in Escherichia coli by constitutive expression of the low-affinity high-capacity araE transporter. Microbiology 147:3241–3247. https://doi.org/10.1099/00221287-147-12-3241

    Article  PubMed  CAS  Google Scholar 

  34. Kovach ME, Elzer PH, Hill DS et al (1995) Four new derivatives of the broad host range cloning vector PBBR1MCS, carrying different antibiotic resistance cassettes. Gene 166:175–176. https://doi.org/10.1089/152045500436104

    Article  PubMed  CAS  Google Scholar 

  35. Kües U, Stahl U (1989) Replication of plasmids in gram-negative bacteria. Microbiol Rev 53:491–516

    PubMed  PubMed Central  Google Scholar 

  36. Lee CL, Ow DSW, Oh SKW (2006) Quantitative real-time polymerase chain reaction for determination of plasmid copy number in bacteria. J Microbiol Methods 65:258–267. https://doi.org/10.1016/j.mimet.2005.07.019

    Article  PubMed  CAS  Google Scholar 

  37. Lee E-C, Yu D, Martinez de Velasco J et al (2001) A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics 73:56–65. https://doi.org/10.1006/geno.2000.6451

    Article  PubMed  CAS  Google Scholar 

  38. Lee T, Krupa RA, Zhang F et al (2011) BglBrick vectors and datasheets: a synthetic biology platform for gene expression. J Biol Eng 5:12. https://doi.org/10.1186/1754-1611-5-12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Lesic B, Rahme LG (2008) Use of the lambda Red recombinase system to rapidly generate mutants in Pseudomonas aeruginosa. BMC Mol Biol 9:20. https://doi.org/10.1186/1471-2199-9-20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Lieder S, Nikel PI, de Lorenzo V, Takors R (2015) Genome reduction boosts heterologous gene expression in Pseudomonas putida. Microb Cell Fact 14:23. https://doi.org/10.1186/s12934-015-0207-7

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lin J, Helinski DR (1992) Analysis of mutations in trfA, the replication initiation gene of the broad-host-range plasmid RK2. J Bacteriol 174:4110–4119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Loeschcke A, Thies S (2015) Pseudomonas putida—a versatile host for the production of natural products. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-015-6745-4

    Article  PubMed  PubMed Central  Google Scholar 

  43. de Lorenzo V, Fernández S, Herrero M et al (1993) Engineering of alkyl- and haloaromatic-responsive gene expression with mini-transposons containing regulated promoters of biodegradative pathways of Pseudomonas. Gene 130:41–46. https://doi.org/10.1016/0378-1119(93)90344-3

    Article  PubMed  Google Scholar 

  44. Luo X, Yang Y, Ling W et al (2016) Pseudomonas putida KT2440 markerless gene deletion using a combination of λ Red recombineering and Cre/loxP site-specific recombination. FEMS Microbiol Lett. https://doi.org/10.1093/femsle/fnw014

    Article  PubMed  Google Scholar 

  45. Mali P, Esvelt KM, Church GM (2013) Cas9 as a versatile tool for engineering biology. Nat Methods 10:957–963. https://doi.org/10.1038/nmeth.2649

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Martínez-García E, de Lorenzo V (2011) Engineering multiple genomic deletions in gram-negative bacteria: analysis of the multi-resistant antibiotic profile of Pseudomonas putida KT2440. Environ Microbiol 13:2702–2716. https://doi.org/10.1111/j.1462-2920.2011.02538.x

    Article  PubMed  CAS  Google Scholar 

  47. Marx CJ, Lidstrom ME (2002) Broad-host-range cre-lox system for antibiotic marker recycling in gram-negative bacteria. Biotechniques 33:1062–1067

    Article  PubMed  CAS  Google Scholar 

  48. McMurry L, Petrucci RE, Levy SB (1980) Active efflux of tetracycline encoded by four genetically different tetracycline resistance determinants in Escherichia coli. Proc Natl Acad Sci USA 77:3974–3977. https://doi.org/10.1073/pnas.77.7.3974

    Article  PubMed  CAS  Google Scholar 

  49. Meijnen JP, De Winde JH, Ruijssenaars HJ (2008) Engineering Pseudomonas putida S12 for efficient utilization of d-xylose and l-arabinose. Appl Environ Microbiol 74:5031–5037. https://doi.org/10.1128/AEM.00924-08

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Morgan-Kiss RM, Wadler C, Cronan JE (2002) Long-term and homogeneous regulation of the Escherichia coli araBAD promoter by use of a lactose transporter of relaxed specificity. Proc Natl Acad Sci USA 99:7373–7377. https://doi.org/10.1073/pnas.122227599

    Article  PubMed  CAS  Google Scholar 

  51. Nagahari K, Sakaguchi K (1978) RSF1010 plasmid as a potentially useful vector in Pseudomonas species. J Bacteriol 133:1527–1529

    PubMed  PubMed Central  CAS  Google Scholar 

  52. Nelson KE, Weinel C, Paulsen IT et al (2002) Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4:799–808. https://doi.org/10.1046/j.1462-2920.2002.00366.x

    Article  PubMed  CAS  Google Scholar 

  53. Nikel PI, Chavarría M, Danchin A, de Lorenzo V (2016) From dirt to industrial applications: Pseudomonas putida as a synthetic biology chassis for hosting harsh biochemical reactions. Curr Opin Chem Biol 34:20–29. https://doi.org/10.1016/j.cbpa.2016.05.011

    Article  PubMed  CAS  Google Scholar 

  54. Nikel PI, Martínez-García E, de Lorenzo V (2014) Biotechnological domestication of pseudomonads using synthetic biology. Nat Rev Microbiol 12:368–379. https://doi.org/10.1038/nrmicro3253

    Article  PubMed  CAS  Google Scholar 

  55. Oh J-H, van Pijkeren J-P (2014) CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri. Nucleic Acids Res 42:1–11. https://doi.org/10.1093/nar/gku623

    Article  CAS  Google Scholar 

  56. Panke S, De Lorenzo V, Kaiser A, Wubbolts MG (1999) Engineering of a stable whole-cell biocatalyst capable of (S)-styrene oxide formation for continuous two-liquid-phase applications. Appl Environ Microbiol 65:5619–5623

    PubMed  PubMed Central  CAS  Google Scholar 

  57. Persson C, Nordström K (1986) Control of replication of the broad host range plasmid RSF1010: the incompatibility determinant consists of directly repeated DNA sequences. Mol Gen Genet 203:189–192. https://doi.org/10.1007/BF00330402

    Article  PubMed  CAS  Google Scholar 

  58. Prior JE, Lynch MD, Gill RT (2010) Broad-host-range vectors for protein expression across gram negative hosts. Biotechnol Bioeng 106:326–332. https://doi.org/10.1002/bit.22695

    Article  PubMed  CAS  Google Scholar 

  59. Pyne ME, Moo-Young M, Chung DA, Chou CP (2015) Coupling the CRISPR/Cas9 system with lambda red recombineering enables simplified chromosomal gene replacement in Escherichia coli. Appl Environ Microbiol 81:5103–5114. https://doi.org/10.1128/AEM.01248-15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Rand JM, Pisithkul T, Clark RL et al (2017) A metabolic pathway for catabolizing levulinic acid in bacteria. Nat Microbiol. https://doi.org/10.1038/s41564-017-0028-z

    Article  PubMed  PubMed Central  Google Scholar 

  61. Rvbetzt K (1981) Regulation of the l-arabinose transport operons in Escherichia coli. J Mol Biol 151:215–227

    Article  Google Scholar 

  62. Schäfer A, Tauch A, Jäger W et al (1994) Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69–73. https://doi.org/10.1016/0378-1119(94)90324-7

    Article  PubMed  Google Scholar 

  63. Schweizer HP, Hoang TT (1995) An improved system for gene replacement and xylE fusion analysis in Pseudomonas aeruginosa. Gene 158:15–22. https://doi.org/10.1016/0378-1119(95)00055-B

    Article  PubMed  CAS  Google Scholar 

  64. Siegele DA, Hu JC (1997) Gene expression from plasmids containing the araBAD promoter at subsaturating inducer concentrations represents mixed populations. Proc Natl Acad Sci USA 94:8168–8172. https://doi.org/10.1073/pnas.94.15.8168

    Article  PubMed  CAS  Google Scholar 

  65. Silva-Rocha R, Martínez-García E, Calles B et al (2013) The Standard European Vector Architecture (SEVA): a coherent platform for the analysis and deployment of complex prokaryotic phenotypes. Nucleic Acids Res 41:666–675. https://doi.org/10.1093/nar/gks1119

    Article  CAS  Google Scholar 

  66. Swingle B, Bao Z, Markel E et al (2010) Recombineering using RecTE from Pseudomonas syringae. Appl Environ Microbiol 76:4960–4968. https://doi.org/10.1128/AEM.00911-10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Tao L, Jackson RE, Cheng Q (2005) Directed evolution of copy number of a broad host range plasmid for metabolic engineering. Metab Eng 7:10–17. https://doi.org/10.1016/j.ymben.2004.05.006

    Article  PubMed  CAS  Google Scholar 

  68. Xiao A, Cheng Z, Kong L et al (2014) CasOT: a genome-wide Cas9/gRNA off-target searching tool. Bioinformatics 30:1180–1182. https://doi.org/10.1093/bioinformatics/btt764

    Article  PubMed  CAS  Google Scholar 

  69. Zobel S, Benedetti I, Eisenbach L et al (2015) Tn7-based device for calibrated heterologous gene expression in Pseudomonas putida. ACS Synth Biol. https://doi.org/10.1021/acssynbio.5b00058

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by research grants from the National Science Foundation (CBET-114678, MCB-1716594) and US-AID (PEER 3-195). T.B.C. and D.K.C. are recipients of NIH Biotechnology Training Program Fellowships (NIGMS 5 T32 GM08349). J.M.R. was supported by an NSF Graduate Research Fellowship (DGE-1256259). S.A.L. is the recipient of a fellowship from the Promega Corporation through the Dane County Youth Apprenticeship Program in Biotechnology. The authors would like to thank Dr. Yalun Arafin and Dr. Fransiskus Ivan for their assistance with the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian F. Pfleger.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 881 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cook, T.B., Rand, J.M., Nurani, W. et al. Genetic tools for reliable gene expression and recombineering in Pseudomonas putida. J Ind Microbiol Biotechnol 45, 517–527 (2018). https://doi.org/10.1007/s10295-017-2001-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-017-2001-5

Keywords

Navigation