Skip to main content
Log in

Reducing diacetyl production of wine by overexpressing BDH1 and BDH2 in Saccharomyces uvarum

  • Fermentation, Cell Culture and Bioengineering - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

As a byproduct of yeast valine metabolism during fermentation, diacetyl can produce a buttery aroma in wine. However, high diacetyl concentrations generate an aromatic off-flavor and poor quality in wine. 2,3-Butanediol dehydrogenase encoded by BDH1 can catalyze the two reactions of acetoin from diacetyl and 2,3-butanediol from acetoin. BDH2 is a gene adjacent to BDH1, and these genes are regulated reciprocally. In this study, BDH1 and BDH2 were overexpressed in Saccharomyces uvarum to reduce the diacetyl production of wine either individually or in combination. Compared with those in the host strain WY1, the diacetyl concentrations in the recombinant strains WY1-1 with overexpressed BDH1, WY1-2 with overexpressed BDH2 alone, and WY1-12 with co-overexpressed BDH1 and BDH2 were decreased by 39.87, 33.42, and 46.71%, respectively. BDH2 was only responsible for converting diacetyl into acetoin, but not for the metabolic pathway of acetoin to 2,3-butanediol in S. uvarum. This study provided valuable insights into diacetyl reduction in wine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bartowsky EJ, Costello PJ, Henschke PA (2002) Management of malolactic fermentation: wine flavour manipulation. Aust Grapegrow Winemak 461:7–14

    Google Scholar 

  2. Bartowsky EJ, Henschke PA (2000) Management of malolactic fermentation for the ‘buttery’ diacetyl flavour in wine. Aust Grapegrow Winemak 438a:58–67

    Google Scholar 

  3. Bartowsky EJ, Henschke PA (2004) The “butter” attribute of wine diacetyl desirability spoilage and beyong. Int J Food Microbiol 96(3):235–252

    Article  CAS  PubMed  Google Scholar 

  4. Blomqvist K, Suihko ML, Knowles J, Penttila M (1991) Chromosomal integration and expression of two bacterial alpha-acetolactate decarboxylase genes in brewer’s yeast. Appl Environ Microb 57(10):2796–2803

    CAS  Google Scholar 

  5. Davis CR, Wibowo D, Eschenbruch R et al (1985) Practical implications of malolactic fermentation: a review. Am J Enol Vitic 36(4):290–301

    CAS  Google Scholar 

  6. Dong J, Xu H, Zhao L et al (2014) Enhanced acetate ester production of Chinese liquor yeast by overexpressing ATF1 through precise and seamless insertion of PGK1 promoter. J Ind Microbiol Biotechnol 41(12):1823–1828

    Article  CAS  PubMed  Google Scholar 

  7. Duong CT, Strack L, Futschik M et al (2011) Identification of Sc-type ILV6 as a target to reduce diacetyl formation in lager brewers’yeast. Metab Eng 13(6):638–647

    Article  CAS  PubMed  Google Scholar 

  8. Douro A, Real V (1984) The occurrence of malolactic fermentation and diacetyl content of dry table wines from northeastern portugal. Am J Enol Vitic 35(1):49–51

    Google Scholar 

  9. Ehsani M, Fernandez M, Biosca J et al (2009) Engineering of 2,3-butanediol dehydrogenase to reduce acetoin formation by glycerol-overproducing, low-alcohol Saccharomyces cerevisiae. Appl Environ Microbiol 75(10):3196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. González E, Fernández MR, Marco D et al (2010) Role of Saccharomyces cerevisiae oxidoreductases Bdh1p and Ara1p in the metabolism of acetoin and 2,3-butanediol. Appl Environ Microbiol 76(3):670

    Article  PubMed  Google Scholar 

  11. Goelling D, Stahl U (1988) Cloning and expression of an alpha-acetolactate decarboxylase gene from Streptococcus lactis subsp. diacetylactis in Escherichia coli. Appl Environ Microb 54(7):1889–1891

    CAS  Google Scholar 

  12. Goossens E, Debourg A, Villanueba K, Masschelein C (1993) Decreased diacetyl production in lager brewing yeast by integration of the ILV5 gene. Jnl Inst Brew 99(3):251–258

    Google Scholar 

  13. Guo XW, Zhang YH, Cao CH et al (2014) Enhanced production of 2,3-butanediol by overexpressing acetolactate synthase and acetoin reductase in Klebsiella pneumoniae. Biotechnol Appl Bioc 61(6):707–715

    Article  CAS  Google Scholar 

  14. Guymon JF, Crowell EA (1965) The formation of acetoin and diacetyl during fermentation and the levels found in wines. Am J Enol Vitic 16:85–91

    CAS  Google Scholar 

  15. Haahr AM, Bredie WLP, Stahnke LH et al (2000) Flavour release of aldehydes and diacetyl in oil/water systems. Food Chem 71(3):355–362

    Article  CAS  Google Scholar 

  16. Hayasaka Y, Bartowsky EJ (1999) Analysis of diacetyl in wine using solid-phase microextraction combined with gas chromatography–mass spectrometry. J Agric Food Chem 47(2):612–617

    Article  CAS  PubMed  Google Scholar 

  17. Kleiner D, Paul W, Merrick MJ (1988) Construction of multicopy expression vectors for regulated over-production of proteins in Klebsiella pneumoniae and other enteric bacteria. J Gen Microbiol 134(7):1779–1784

    CAS  PubMed  Google Scholar 

  18. Kobayashi M, Shimizu H, Shioya S (2008) Beer volatile compounds and their application to low-malt beer fermentation. J Biosci Bioeng 106(4):317–323

    Article  CAS  PubMed  Google Scholar 

  19. Martineau B, Acree TE, Henick-Kling T (1995) Effect of wine type on the detection threshold for diacetyl. Food Res Int 28(2):139–143

    Article  CAS  Google Scholar 

  20. Martineau B, Henick-Kling T (1995) Formation and degradation of diacetyl in wine during alcoholic fermentation with Saccharomyces cerevisiae strain EC 1118 and malolactic fermentation with Leuconostoc oenos strain MCW. Am J Enol Vitic 46:442–448

    CAS  Google Scholar 

  21. Martineau B, Henick-Kling T (2010) Performance and diacetyl production of commercial strains of malolactic bacteria in wine. J Appl Microbiol 78(5):526–536

    Google Scholar 

  22. Martineau B, Henick-Kling T, Acree T (1995) Ressessment of the influence of malolactic fermentation on the concentration of diacetyl in wines. Am J Enol Vitic 46(3):385–388

    CAS  Google Scholar 

  23. Mink R, Kölling R, Sommer S et al (2014) Diacetyl formation by Oenococcus oeni during winemaking induced by exogenous pyruvate. Am J Enol Vitic 66(1):85–90

    Article  Google Scholar 

  24. Mink R, Sommer S, Kölling R et al (2014) Diacetyl reduction by commercial Saccharomyces cerevisiae strains during vinification. Jnl Inst Brew 120(1):23–26

    Article  CAS  Google Scholar 

  25. Nielsen JC, Richelieu M (1999) Control of flavor development in wine during and after malolactic fermentation by Oenococcus oeni. Appl Environ Microbiol 65(2):740–745

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Omura F (2008) Targeting of mitochondrial Saccharomyces cerevisiae Ilv5p to the cytosol and its effect on vicinal diketone formation in brewing. Appl Microbiol Biotechnol 78(3):503–513

    Article  CAS  PubMed  Google Scholar 

  27. Romano P, Suzzi G (1996) Origin and production of acetoin during wine yeast fermentation. Appl Environ Microbiol 62:309–315

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Ramos A, Santos H (1996) Citrate and sugar cofermentation in Leuconostoc oenos, a 13C NMR study. Appl Environ Microb 62(7):2577–2585

    CAS  Google Scholar 

  29. Schiestl RH, Gietz RD (1989) High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr Genet 16(5):339–346

    Article  CAS  PubMed  Google Scholar 

  30. Shi TT, Guo XW, Li P et al (2016) Diacetyl content reduction in industrial brewer’s yeast through ILV2 disruption and BDH1 expression. Eur Food Res Technol 242(6):919–926

    Article  CAS  Google Scholar 

  31. Speckman RA, Collins EB (1968) Diacetyl biosynthesis in Streptococcus diacetilactis and Leuconostoc citrovorum. J Bacteriol 95:174–180

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Teste MA, Duquenne M, François JM et al (2009) Validation of reference genes for quantitative expression analysis by real-time RT-PCR in Saccharomyces cerevisiae. BMC Mol Biol 10(1):99

    Article  PubMed  PubMed Central  Google Scholar 

  33. Villanueba KD, Gossens E, Masschelein CA (1990) Subthreshold vicinal diketone levels in lager brewing yeast fermentations by means of ILV5 gene amplification. J Am Soc Brew Chem 48(3):111–114

    CAS  Google Scholar 

  34. Wainwright T (1973) Diacetyl—a review: part I—analytical and biochemical considerations: part II—brewing experience. J Inst Brew 79(6):451–470

    Article  CAS  Google Scholar 

  35. Wei YJ, Hao YN, Du HJ et al (2008) Determination of diacetyl content in wine by o-phenylenediamine colorimetric method. Sino-Overseas Grapevine Wine 4:4–7 (in Chinese)

    Google Scholar 

  36. Yamaguchi M, Ishida J, Xuan ZX (1994) Determination of glyoxal, methylglyoxal, diacetyl, and 2,3-pentanedione in fermented foods by high-performance liquid chromatography with fluorescence detection. J Liq Chromatogr 17(1):203–211

    Article  CAS  Google Scholar 

  37. Yamano S, Tanaka J, Inoue T (1994) Cloning and expression of the gene encoding alpha-acetolactate decarboxylase from Acetobacter aceti ssp. xylinum in brewer’s yeast. J Biotechnol 32(2):165–171

    Article  CAS  PubMed  Google Scholar 

  38. Yang DY, Kakuda Y, Subden RE (2006) Higher alcohols, diacetyl, acetoin and 2,3-butanediol biosynthesis in grapes undergoing carbonic maceration. Food Res Int 39(1):112–116

    Article  CAS  Google Scholar 

  39. Zhang Y, Wang ZY, He XP, Liu N, Zhang BR (2008) New industrial brewing yeast strains with ILV2 disruption and LSD1 expression. Int J Food Microbiol 123(1–2):18–24

    Article  CAS  PubMed  Google Scholar 

  40. Zhu B, Cai G, Hall EO, Freeman GJ (2007) In-fusion™ assembly: seamless engineering of multidomain fusion proteins, modular vectors, and mutations. Biotechniques 43:354–359

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The current study was financially supported by the National High Technology Research and Development Program of China (863 Program) (2012AA022108), the National Natural Science Foundation of China (31271916), and the Key Technologies R & D Program of Tianjin (Grant no. 15ZCZDNC00110).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuewu Guo or Dongguang Xiao.

Ethics declarations

Ethical statement

This manuscript is in compliance with Ethical Standards. This manuscript does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 169 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Guo, X., Shi, T. et al. Reducing diacetyl production of wine by overexpressing BDH1 and BDH2 in Saccharomyces uvarum . J Ind Microbiol Biotechnol 44, 1541–1550 (2017). https://doi.org/10.1007/s10295-017-1976-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-017-1976-2

Keywords

Navigation