Skip to main content
Log in

Targeting of mitochondrial Saccharomyces cerevisiae Ilv5p to the cytosol and its effect on vicinal diketone formation in brewing

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Vicinal diketones (VDK) cause butter-like off-flavors in beer and are formed by a non-enzymatic oxidative decarboxylation of α-aceto-α-hydroxybutyrate and α-acetolactate, which are intermediates in isoleucine and valine biosynthesis taking place in the mitochondria. On the assumption that part of α-acetolactate can be formed also in the cytosol due to a mislocalization of the responsible acetohydroxyacid synthase encoded by ILV2 and ILV6, functional expression in the cytosol of acetohydroxyacid reductoisomerase (Ilv5p) was explored. Using the cytosolic Ilv5p, I aimed to metabolize the cytosolically formed α-aetolactate, thereby lowering the total VDK production. Among mutant Ilv5p enzymes with varying degrees of N-terminal truncation, one with a 46-residue deletion (Ilv5pΔ46) exhibited an unequivocal localization in the cytosol judged from microscopy of the Ilv5pΔ46-green fluorescent protein fusion protein and the inability of Ilv5pΔ46 to remedy the isoleucine/valine requirement of an ilv5Δ strain. When introduced into an industrial lager brewing strain, a robust expression of Ilv5pΔ46 was as effective as that of a wild-type Ilv5p in lowering the total VDK production in a 2-l scale fermentation trial. Unlike the case of the wild-type Ilv5p, an additional expression of Ilv5pΔ46 did not alter the quality of the resultant beer in terms of contents of aromatic compounds and organic acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arfin SM, Bradshaw RA (1988) Cotranslational processing and protein turnover in eukaryotic cells. Biochemistry 27:7979–7984

    Article  CAS  Google Scholar 

  • Bateman JM, Perlman PS, Butow RA (2002) Mutational bisection of the mitochondrial DNA stability and amino acid biosynthetic functions of Ilv5p of budding yeast. Genetics 161:1043–1052

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brondijk TH, van der Rest ME, Pluim D, de Vries Y, Stingl K, Poolman B, Konings WN (1998) Catabolite inactivation of wild-type and mutant maltose transport proteins in Saccharomyces cerevisiae. J Biol Chem 273:15352–15357

    Article  CAS  Google Scholar 

  • De Virgilio C, Bürckert N, Barth G, Neuhaus JM, Boller T, Wiemken A (1992) Cloning and disruption of a gene required for growth on acetate but not on ethanol: the acetyl-coenzyme A synthetase gene of Saccharomyces cerevisiae. Yeast 12:1043–1051

    Article  Google Scholar 

  • Dickinson JR, Harrison SJ, Hewlins MJE (1998) An investigation of the metabolism of valine to isobutyl alcohol in Saccharomyces cerevisiae. J Biol Chem 273:25751–25756

    Article  CAS  Google Scholar 

  • Dickinson JR, Harrison SJ, Dickinson JA, Hewlins MJE (2000) An investigation of the metabolism of isoleucine to active amyl alcohol in Saccharomyces cerevisiae. J Biol Chem 275:10937–10942

    Article  CAS  Google Scholar 

  • Dillemans M, Goossens E, Goffin O, Masschelein CA (1987) The amplification effect of the ILV5 gene on the production of vicinal diketones in Saccharomyces cerevisiae. J Am Soc Brew Chem 45:81–84

    CAS  Google Scholar 

  • Drews B, Specht H, Bärwald G, Trénel G (1966) Diacetyl-und acetoinbestimmung im bier. Monatsschrift Brauerei 19:34–36

    CAS  Google Scholar 

  • Dumas R, Butikofer M-C, Job D, Douce R (1995) Evidence for two catalytically different magnesium-binding sites in acetohydroxy acid isomeroreductase by site-directed mutagenesis. Biochemistry 34:6026–6036

    Article  CAS  Google Scholar 

  • Endo T, Yamamoto H, Esaki M (2003) Functional cooperation and separation of translocators in protein import into mitochondria, the double-membrane bounded organelles. J Cell Sci 116:3259–3267

    Article  CAS  Google Scholar 

  • Ernandes JR, Williams JW, Russell I, Stewart GG (1993) Respiratory deficiency in brewing yeast strains: effects on fermentation, flocculation, and beer flavor components. J Am Soc Brew Chem 51:16–20

    CAS  Google Scholar 

  • Fujiwara D, Kobayashi O, Yoshimoto H, Harashima S, Tamai Y (1999) Molecular mechanism of the multiple regulation of the Saccharomyces cerevisiae ATF1 gene encoding alcohol acetyltransferase. Yeast 15:1183–1197

    Article  CAS  Google Scholar 

  • Furukubo S, Shobayashi M, Fukui N, Isoe A, Nakatani K (1993) A new factor which affects the foam adhesion of beer. Tech Q Master Brew Assoc Am 30:155–158

    CAS  Google Scholar 

  • Gakh O, Cavadini P, Isaya G (2002) Mitochondrial processing peptidases. Biochim Biophys Acta 1592:63–77

    Article  CAS  Google Scholar 

  • Gjermansen C, Nilsson-Tillgren T, Petersen JGL, Kielland-Brandt MC, Sigsgaard P, Holmberg S (1988) Towards diacetyl-less brewers’ yeast. Influence of ilv2 and ilv5 mutations. J Basic Microbiol 28:175–183

    Article  CAS  Google Scholar 

  • Kassow A (1992) Metabolic effects of deleting the region encoding the transit peptide in Saccharomyces cerevisiae ILV5. PhD thesis, University of Copenhagen

  • Kodama Y, Omura F, Ashikari T (2001) Isolation and characterization of a gene specific to lager brewing yeast that encodes a branched-chain amino acid permease. Appl Environ Microbiol 67:3455–3462

    Article  CAS  Google Scholar 

  • Kodama Y, Kielland-Brandt MC, Hansen J (2006) Comparative genomics, topics in current genetics, vol. 15. Sunnerhagen P, Piškur J (eds) pp 145–164, Springer, Berlin/Heidelberg

  • Koehler CM (2004) New developments in mitochondrial assembly. Annu Rev Cell Dev Biol 20:309–335

    Article  CAS  Google Scholar 

  • Lévy F, Johnston JA, Varshavsky A (1999) Analysis of a conditional degradation signal in yeast and mammalian cells. Eur J Biochem 259:244–252

    Article  Google Scholar 

  • Li X, Chang YH (1995) Amino-terminal protein processing in Saccharomyces cerevisiae is an essential function that requires two distinct methionine aminopeptidases. Proc Natl Acad Sci U S A 92:12357–12361

    Article  CAS  Google Scholar 

  • MacAlpine DM, Perlman PS, Butow RA (2000) The numbers of individual mitochondrial DNA molecules and mitochondrial DNA nucleoids in yeast are co-regulated by the general amino acid control pathway. EMBO J 19:767–775

    Article  CAS  Google Scholar 

  • Meilgaard MC (1975) Flavour chemistry of beer: Part II: flavour and threshold of 239 aroma volatiles. Tech Q Master Brew Assoc Am 12:151–168

    CAS  Google Scholar 

  • Nakatani K, Fukui N, Nagami K, Nishigaki M (1991) Kinetic analysis of ester formation during beer fermentation. J Am Soc Brew Chem 49:152–157

    CAS  Google Scholar 

  • Omura F, Kodama Y, Ashikari T (2001) The basal turnover of yeast branched-chain amino acid permease Bap2p requires its C-terminal tail. FEMS Microbiol Lett 194:207–214

    Article  CAS  Google Scholar 

  • Pang SS, Duggleby RG (1999) Expression, purification, characterization, and reconstitution of the large and small subunits of yeast acetohydroxyacid synthase. Biochemistry. 38:5222–5231

    Article  CAS  Google Scholar 

  • Petersen JGL, Holmberg S (1986) The ILV5 gene of Saccharomyces cerevisiae is highly expressed. Nucleic Acids Res 14:9631–9651

    Article  CAS  Google Scholar 

  • Polevoda B, Panciera Y, Brown SP, Wei J, Sherman F (2006) Phenotypes of yeast mutants lacking the mitochondrial protein Pet20p. Yeast 23:127–139

    Article  CAS  Google Scholar 

  • Poulsen C, Stougaard P (1989) Purification and properties of Saccharomyces cerevisiae acetolactate synthase from recombinant Escherichia coli. Eur J Biochem 185:433–439

    Article  CAS  Google Scholar 

  • Pronk JT, Steensma HY, Van Dijken JP (1996) Pyruvate metabolism in Saccharomyces cerevisiae. Yeast 16:1607–1633

    Article  Google Scholar 

  • Rankine B (1962) New method for determining sulfur dioxide in wine. Aust Wine Brew Spirit Rev 80:14–16

    Google Scholar 

  • Rose MD, Winston F, Hieter P (1990) Methods in yeast genetics, a laboratory course manual. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Ryan ED, Kohlhaw GB (1974) Subcellular localization of isoleucine–valine biosynthetic enzymes in yeast. J Bacteriol 120:631–637

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Stinchcomb DT, Thomas M, Kelly J, Selker E, Davis RW (1980) Eukaryotic DNA segments capable of autonomous replication in yeast. Proc Natl Acad Sci U S A 77:4559–4563

    Article  CAS  Google Scholar 

  • Truscott KN, Brandner K, Pfanner N (2003) Mechanisms of protein import into mitochondria. Curr Biol 13:R326–R337

    Article  CAS  Google Scholar 

  • Varshavsky A (1996) The N-end rule: Functions, mysteries, uses. Proc Natl Acad Sci U S A 93:12142–12149

    Article  CAS  Google Scholar 

  • von Heijne G, Steppuhn J, Herrmann RG (1989) Domain structure of mitochondrial and chloroplast targeting peptides. Eur J Biochem 180:535–545

    Article  Google Scholar 

  • Wenzel TJ, Luttik MA, van den Berg JA, Steensma HY (1993) Regulation of the PDA1 gene encoding the E1 alpha subunit of the pyruvate dehydrogenase complex from Saccharomyces cerevisiae. Eur J Biochem 218:405–411

    Article  CAS  Google Scholar 

  • Wiedemann N, Kozjak V, Chacinska A, Schönfisch B, Rospert S, Ryan MT, Pfanner N, Meisinger C (2003) Machinery for protein sorting and assembly in the mitochondrial outer membrane. Nature 424:565–571

    Article  CAS  Google Scholar 

  • Zahedi RP, Sickmann A, Boehm AM, Winkler C, Zufall N, Schönfisch B, Guiard B, Pfanner N, Meisinger C (2006) Proteomic analysis of the yeast mitochondrial outer membrane reveals accumulation of a subclass of preproteins. Mol Biol Cell 17:1436–1450

    Article  CAS  Google Scholar 

  • Zelenaya-Troitskaya O, Perlman PS, Butow RA (1995) An enzyme in yeast mitochondria that catalyzes a step in branched-chain amino acid biosynthesis also functions in mitochondrial DNA stability. EMBO J 14:3268–3276

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks Morten C Kielland-Brandt and Kjeld Olesen for critical reading of the manuscript. The expert technical assistance of Yumiko Itokui, Yachiyo Wada, Kaoru Nakagawa, and Hiromi Hata is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumihiko Omura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Omura, F. Targeting of mitochondrial Saccharomyces cerevisiae Ilv5p to the cytosol and its effect on vicinal diketone formation in brewing. Appl Microbiol Biotechnol 78, 503–513 (2008). https://doi.org/10.1007/s00253-007-1333-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-1333-x

Keywords

Navigation