Skip to main content
Log in

Metabolic engineering of Escherichia coli W3110 for the production of l-methionine

  • Metabolic Engineering and Synthetic Biology - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

In this study, we constructed an l-methionine-producing recombinant strain from wild-type Escherichia coli W3110 by metabolic engineering. To enhance the carbon flux to methionine and derepression met regulon, thrBC, lysA, and metJ were deleted in turn. Methionine biosynthesis obstacles were overcome by overexpression of metA Fbr (Fbr, Feedback resistance), metB, and malY under control of promoter pN25. Recombinant strain growth and methionine production were further improved by attenuation of metK gene expression through replacing native promoter by metK84p. Blocking the threonine pathway by deletion of thrBC or thrC was compared. Deletion of thrC showed faster growth rate and higher methionine production. Finally, metE, metF, and metH were overexpressed to enhance methylation efficiency. Compared with the original strain E. coli W3110, the finally obtained Me05 (pETMAFbr-B-Y/pKKmetH) improved methionine production from 0 to 0.65 and 5.62 g/L in a flask and a 15-L fermenter, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Augustus AM, Reardon PN, Heller WT, Spicer LD (2006) Structural basis for the differential regulation of DNA by the methionine repressor MetJ. J Biol Chem 281:34269–34276. doi:10.1074/jbc.M605763200

    Article  CAS  PubMed  Google Scholar 

  2. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2(2006):0008. doi:10.1038/msb4100050

    PubMed  Google Scholar 

  3. Bestel-Corre G, Chateau M, Figge R, Raynaud C, Soucaille P (2005) Recombinant enzyme with altered feedback sensitivity. US 2009/0029424 A1

  4. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci 97:6640–6645. doi:10.1073/pnas.120163297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Deuschle U, Kammerer W, Gentz R, Bujard H (1986) Promoters of Escherichia coli: a hierarchy of in vivo strength indicates alternate structures. EMBO J 5:2987–2994

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Figge RM (2007) Methionine biosynthesis in Escherichia coli and Corynebacterium glutamicum. In: Amino acid biosynthesis pathways, regulation and metabolic engineering. Springer, Berlin, Heidelberg, New York. doi:10.1007/978-3-540-48596-4

  7. Gentz R, Bujard H (1985) Promoters recognized by Escherichia coli RNA polymerase selected by function: highly efficient promoters from bacteriophage T5. J Bacteriol 164:70–77

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Greene RC, Hunter JS, Coch EH (1973) Properties of metK mutants of Escherichia coli K-12. J Bacteriol 115:57–67

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Greene RC, Su C-H, Holloway CT (1970) S-Adenosylmethionine synthetase deficient mutants of Escherichia coli K-12 with impaired control of methionine biosynthesis. Biochem Biophys Res Commun 38:1120–1126. doi:10.1016/0006-291X(70)90355-4

    Article  CAS  PubMed  Google Scholar 

  10. Gu P, Su T, Qi Q (2016) Novel technologies provide more engineering strategies for amino acid-producing microorganisms. Appl Microbiol Biotechnol 100:2097–2105. doi:10.1007/s00253-015-7276-8

    Article  CAS  PubMed  Google Scholar 

  11. Hafner EW, Tabor C, Tabor H (1977) Isolation of a metK mutant with a temperature-sensitive S-adenosylmethionine synthetase. J Bacteriol 132:832–840

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Hayashi K, Morooka N, Yamamoto Y, Fujita K, Isono K, Choi S, Ohtsubo E, Baba T, Wanner BL, Mori H, Horiuchi T (2006) Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol 2(2006):0007. doi:10.1038/msb4100049

    PubMed  Google Scholar 

  13. He YY, Garvie CW, Elworthy S, Manfield IW, McNally T, Lawrenson ID, Phillips SEV, Stockley PG (2002) Structural and functional studies of an intermediate on the pathway to operator binding by Escherichia coli MetJ. J Mol Biol 320:39–53. doi:10.1016/s0022-2836(02)00423-0

    Article  CAS  PubMed  Google Scholar 

  14. Kadner RJ (1974) Transport systems for l-methionine in Escherichia coli. J Bacteriol 117:232–241

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kadner RJ, Watson WJ (1974) Methionine transport in Escherichia coli: physiological and genetic evidence for two uptake systems. J Bacteriol 119:401–409

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Katz RS, Baker DH (1975) Efficacy of d-, l- and dl-methionine for growth of chicks fed crystalline amino acid diets. Poult Sci 54:1667–1674

    Article  CAS  PubMed  Google Scholar 

  17. Kingsbury JM, McCusker JH (2010) Homoserine toxicity in Saccharomyces cerevisiae and Candida albicans homoserine kinase (thr1Delta) mutants. Eukaryot Cell 9:717–728. doi:10.1128/EC.00044-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kotre AM, Sullivan SJ, Savageau MA (1973) Metabolic regulation by homoserine in Escherichia coli B-r. J Bacteriol 116:663–672

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kromer JO, Wittmann C, Schroder H, Heinzle E (2006) Metabolic pathway analysis for rational design of l-methionine production by Escherichia coli and Corynebacterium glutamicum. Metab Eng 8:353–369. doi:10.1016/j.ymben.2006.02.001

    Article  PubMed  Google Scholar 

  20. Kumar D, Gomes J (2005) Methionine production by fermentation. Biotechnol Adv 23:41–61. doi:10.1016/j.biotechadv.2004.08.005

    Article  CAS  PubMed  Google Scholar 

  21. Kutukova EA, Livshits VA, Altman IP, Ptitsyn LR, Zyiatdinov MH, Tokmakova IL, Zakataeva NP (2005) The yeaS (leuE) gene of Escherichia coli encodes an exporter of leucine, and the Lrp protein regulates its expression. FEBS Lett 579:4629–4634. doi:10.1016/j.febslet.2005.07.031

    Article  CAS  PubMed  Google Scholar 

  22. Lee KH, Park JH, Kim TY, Kim HU, Lee SY (2007) Systems metabolic engineering of Escherichia coli for l-threonine production. Mol Syst Biol 3:149. doi:10.1038/msb4100196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu Q, Liang Y, Zhang Y, Shang X, Liu S, Wen J, Wen T (2015) YjeH is a novel exporter of l-methionine and branched-chain amino acids in Escherichia coli. Appl Environ Microb 81:7753–7766. doi:10.1128/aem.02242-15

    Article  CAS  Google Scholar 

  24. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(−Delta Delta C) method. Methods 25:402–408. doi:10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  25. Marincs F, Manfield IW, Stead JA, McDowall KJ, Stockley PG (2006) Transcript analysis reveals an extended regulon and the importance of protein-protein co-operativity for the Escherichia coli methionine repressor. Biochem J 396:227–234. doi:10.1042/BJ20060021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Matthews RG (2001) Cobalamin-dependent methyltransferases. Accounts Chem Res 34:681–689. doi:10.1021/ar0000051

    Article  CAS  Google Scholar 

  27. Matthews RG, Koutmos M, Datta S (2008) Cobalamin-dependent and cobamide-dependent methyltransferases. Curr Opin Struct Biol 18:658–666. doi:10.1016/j.sbi.2008.11.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Michael R, Green Joseph S (2012) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  29. Mitsuhashi S (2014) Current topics in the biotechnological production of essential amino acids, functional amino acids, and dipeptides. Curr Opin Biotechnol 26:38–44. doi:10.1016/j.copbio.2013.08.020

    Article  CAS  PubMed  Google Scholar 

  30. Mondal S (1993) Influence of cystine on methionine production by Nocardia Polychromogenes and Brevibacterium Ammoniagenes. Res Ind 38:101

    CAS  Google Scholar 

  31. Nakamori S, Kobayashi S, Nishimura T, Takagi H (1999) Mechanism of l-methionine overproduction by Escherichia coli: the replacement of Ser-54 by Asn in the MetJ protein causes the derepression of l-methionine biosynthetic enzymes. Appl Microbiol Biotechnol 52:179–185

    Article  CAS  PubMed  Google Scholar 

  32. Nakashima N, Tamura T (2009) Conditional gene silencing of multiple genes with antisense RNAs and generation of a mutator strain of Escherichia coli. Nucleic Acids Res 37:e103. doi:10.1093/nar/gkp498

    Article  PubMed  PubMed Central  Google Scholar 

  33. Nwachukwu RES, Ekwealor IA (2009) Methionine-producing Streptomyces species isolated from Southern Nigeria soil. Afr J Microbiol Res 3:478–481

    CAS  Google Scholar 

  34. Park JH, Lee SY (2010) Metabolic pathways and fermentative production of l-aspartate family amino acids. Biotechnol J 5:560–577. doi:10.1002/biot.201000032

    Article  CAS  PubMed  Google Scholar 

  35. Patte J (1996) Biosynthesis of threonine and lysine. Escherichia coli and Salmonella: cellular and molecular biology, 2nd edn. ASM Press, Washington, DC

  36. Satishchandran C, Taylor J, Markham G (1990) Novel Escherichia coli K-12 mutants impaired in S-adenosylmethionine synthesis. J Bacteriol 172:4489–4496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schroeder HR, Barnes CJ, Bohinski RC, Mallette MF (1973) Biological production of 5-methylthioribose. Can J Microbiol 19:1347–1354

    Article  CAS  PubMed  Google Scholar 

  38. Serra-Moreno R, Acosta S, Hernalsteens J, Jofre J, Muniesa M (2006) Use of the lambda Red recombinase system to produce recombinant prophages carrying antibiotic resistance genes. BMC Mol Biol 7:31. doi:10.1186/1471-2199-7-31

    Article  PubMed  PubMed Central  Google Scholar 

  39. Shakoori FR, Butt AM, Ali NM, Zahid MT, Rehman A, Shakoori AR (2012) Optimization of fermentation media for enhanced amino acids production by bacteria isolated from natural sources. Pak J Zool 44:1145–1157

    CAS  Google Scholar 

  40. Townsend DM, Tew KD, Tapiero H (2004) Sulfur containing amino acids and human disease. Biomed Pharmacother 58:47–55

    Article  CAS  PubMed  Google Scholar 

  41. Tuan LR, D’Ari R, Newman EB (1990) The leucine regulon of Escherichia coli K-12: a mutation in rblA alters expression of l-leucine-dependent metabolic operons. J Bacteriol 172:4529–4535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Usuda Y, Kurahashi O (2005) Effects of deregulation of methionine biosynthesis on methionine excretion in Escherichia coli. Appl Environ Microbiol 71:3228–3234. doi:10.1128/AEM.71.6.3228-3234.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wei Y, Newman EB (2002) Studies on the role of the metK gene product of Escherichia coli K-12. Mol Microbiol 43:1651–1656

    Article  CAS  PubMed  Google Scholar 

  44. Willke T (2014) Methionine production—a critical review. Appl Microbiol Biotechnol 98:9893–9914. doi:10.1007/s00253-014-6156-y

    Article  CAS  PubMed  Google Scholar 

  45. Xavier KB, Bassler BL (2003) LuxS quorum sensing: more than just a numbers game. Curr Opin Microbiol 6:191–197. doi:10.1016/S1369-5274(03)00028-6

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financial supported by the National Natural Foundation of China (No. 31401674), the National High-Tech Research and Development Program of China (863 Program, No 2011AA100905, 2012AA02120101), and Science Found for Distinguished Young Scholars of Jiangsu province, China (BK20140002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui Yang Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Wang, B.S., Li, Y.R. et al. Metabolic engineering of Escherichia coli W3110 for the production of l-methionine. J Ind Microbiol Biotechnol 44, 75–88 (2017). https://doi.org/10.1007/s10295-016-1870-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-016-1870-3

Keywords

Navigation