Skip to main content
Log in

Genetic switches and related tools for controlling gene expression and electrical outputs of Geobacter sulfurreducens

  • Metabolic Engineering and Synthetic Biology - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Physiological studies and biotechnology applications of Geobacter species have been limited by a lack of genetic tools. Therefore, potential additional molecular strategies for controlling metabolism were explored. When the gene for citrate synthase, or acetyl-CoA transferase, was placed under the control of a LacI/IPTG regulator/inducer system, cells grew on acetate only in the presence of IPTG. The TetR/AT system could also be used to control citrate synthase gene expression and acetate metabolism. A strain that required IPTG for growth on d-lactate was constructed by placing the gene for d-lactate dehydrogenase under the control of the LacI/IPTG system. d-Lactate served as an inducer in a strain in which a d-lactate responsive promoter and transcription repressor were used to control citrate synthase expression. Iron- and potassium-responsive systems were successfully incorporated to regulate citrate synthase expression and growth on acetate. Linking the appropriate degradation tags on the citrate synthase protein made it possible to control acetate metabolism with either the endogenous ClpXP or exogenous Lon protease and tag system. The ability to control current output from Geobacter biofilms and the construction of an AND logic gate for acetate metabolism suggested that the tools developed may be applicable for biosensor and biocomputing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Abo T, Inada T, Ogawa K, Aiba H (2000) SsrA-mediated tagging and proteolysis of LacI and its role in the regulation of lac operon. EMBO J 19:3762–3769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Baker TA, Sauer RT (2012) ClpXP, an ATP-powered unfolding and protein-degradation machine. Biochim Biophys Acta 1823:15–28

    Article  CAS  PubMed  Google Scholar 

  3. Benanti EL, Chivers PT (2010) Geobacter uraniireducens NikR displays a DNA binding mode distinct from other members of the NikR family. J Bacteriol 192:4327–4336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Benenson Y (2012) Biomolecular computing systems: principles, progress and potential. Nat Rev Genet 13:455–468

    Article  CAS  PubMed  Google Scholar 

  5. Bereza-Malcolm LT, Mann G, Franks AE (2015) Environmental sensing of heavy metals through whole cell microbial biosensors: a synthetic biology approach. ACS Synth Biol 4:535–546

    Article  CAS  PubMed  Google Scholar 

  6. Bertram R, Hillen W (2008) The application of Tet repressor in prokaryotic gene regulation and expression. Microb Biotechnol 1:2–16

    CAS  PubMed  Google Scholar 

  7. Bond DR, Mester T, Nesbo CL, Izquierdo-Lopez AV, Collart FL, Lovley DR (2005) Characterization of citrate synthase from Geobacter sulfurreducens and evidence for a family of citrate synthases similar to those of eukaryotes throughout the Geobacteraceae. Appl Environ Microbiol 71:3858–3865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brophy JA, Voigt CA (2014) Principles of genetic circuit design. Nat Methods 11:508–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Butler JE, Kaufmann F, Coppi MV, Nunez C, Lovley DR (2004) MacA, a diheme c-type cytochrome involved in Fe(III) reduction by Geobacter sulfurreducens. J Bacteriol 186:4042–4045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Caccavo F Jr, Lonergan DJ, Lovley DR, Davis M, Stolz JF, McInerney MJ (1994) Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl Environ Microbiol 60:3752–3759

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Chan CH, Levar CE, Zacharoff L, Badalamenti JP, Bond DR (2015) Scarless genome editing and stable inducible expression vectors for Geobacter sulfurreducens. Appl Environ Microbiol 81:7178–7186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Coppi MV, Leang C, Sandler SJ, Lovley DR (2001) Development of a genetic system for Geobacter sulfurreducens. Appl Environ Microbiol 67:3180–3187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Coppi MV, O’Neil RA, Leang C, Kaufmann F, Methe BA, Nevin KP, Woodard TL, Liu A, Lovley DR (2007) Involvement of Geobacter sulfurreducens SfrAB in acetate metabolism rather than intracellular, respiration-linked Fe(III) citrate reduction. Microbiology 153:3572–3585

    Article  CAS  PubMed  Google Scholar 

  14. Embree M, Qiu Y, Shieu W, Nagarajan H, O’Neil R, Lovley D, Zengler K (2014) The iron stimulon and fur regulon of Geobacter sulfurreducens and their role in energy metabolism. Appl Environ Microbiol 80:2918–2927

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fillat MF (2014) The FUR (ferric uptake regulator) superfamily: diversity and versatility of key transcriptional regulators. Arch Biochem Biophys 546:41–52

    Article  CAS  PubMed  Google Scholar 

  16. Golitsch F, Bucking C, Gescher J (2013) Proof of principle for an engineered microbial biosensor based on Shewanella oneidensis outer membrane protein complexes. Biosens Bioelectron 47:285–291

    Article  CAS  PubMed  Google Scholar 

  17. Guan L, Liu Q, Li C, Zhang Y (2013) Development of a Fur-dependent and tightly regulated expression system in Escherichia coli for toxic protein synthesis. BMC Biotechnol 13:25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gur E, Sauer RT (2008) Evolution of the ssrA degradation tag in Mycoplasma: specificity switch to a different protease. Proc Natl Acad Sci USA 105:16113–16118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580

    Article  CAS  PubMed  Google Scholar 

  20. Heermann R, Jung K (2010) The complexity of the ‘simple’ two-component system KdpD/KdpE in Escherichia coli. FEMS Microbiol Lett 304:97–106

    Article  CAS  PubMed  Google Scholar 

  21. Hoch JA, Silhavy TJ (1995) Two-component signal transduction. ASM Press, Washington, DC

    Google Scholar 

  22. Holmes DE, Nevin KP, O’Neil RA, Ward JE, Adams LA, Woodard TL, Vrionis HA, Lovley DR (2005) Potential for quantifying expression of the Geobacteraceae citrate synthase gene to assess the activity of Geobacteraceae in the subsurface and on current-harvesting electrodes. Appl Environ Microbiol 71:6870–6877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hu Y, Yang Y, Katz E, Song H (2015) Programming the quorum sensing-based AND gate in Shewanella oneidensis for logic gated-microbial fuel cells. Chem Commun (Camb) 51:4184–4187

    Article  CAS  Google Scholar 

  24. Huang D, Holtz WJ, Maharbiz MM (2012) A genetic bistable switch utilizing nonlinear protein degradation. J Biol Eng 6:9

    Article  PubMed  PubMed Central  Google Scholar 

  25. Izallalen M, Mahadevan R, Burgard A, Postier B, Didonato R Jr, Sun J, Schilling CH, Lovley DR (2008) Geobacter sulfurreducens strain engineered for increased rates of respiration. Metab Eng 10:267–275

    Article  CAS  PubMed  Google Scholar 

  26. Katz E (2015) Biocomputing—tools, aims, perspectives. Curr Opin Biotechnol 34:202–208

    Article  CAS  PubMed  Google Scholar 

  27. Khalil AS, Collins JJ (2010) Synthetic biology: applications come of age. Nat Rev Genet 11:367–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Leang C, Coppi MV, Lovley DR (2003) OmcB, a c-type polyheme cytochrome, involved in Fe(III) reduction in Geobacter sulfurreducens. J Bacteriol 185:2096–2103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Leang C, Krushkal J, Ueki T, Puljic M, Sun J, Juarez K, Nunez C, Reguera G, DiDonato R, Postier B, Adkins RM, Lovley DR (2009) Genome-wide analysis of the RpoN regulon in Geobacter sulfurreducens. BMC Genom 10:331

    Article  Google Scholar 

  30. Leang C, Malvankar NS, Franks AE, Nevin KP, Lovley DR (2013) Engineering Geobacter sulfurreducens to produce a highly cohesive conductive matrix with enhanced capacity for current production. Energy Environ Sci 6:1901–1908

    Article  CAS  Google Scholar 

  31. Lee JW, Helmann JD (2007) Functional specialization within the Fur family of metalloregulators. Biometals 20:485–499

    Article  CAS  PubMed  Google Scholar 

  32. Levar CE, Chan CH, Mehta-Kolte MG, Bond DR (2014) An inner membrane cytochrome required only for reduction of high redox potential extracellular electron acceptors. MBio 5:e02034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lim JM, Hong MJ, Kim S, Oh DB, Kang HA, Kwon O (2008) Iron chelator-inducible expression system for Escherichia coli. J Microbiol Biotechnol 18:1357–1363

    CAS  PubMed  Google Scholar 

  34. Liu X, Tremblay PL, Malvankar NS, Nevin KP, Lovley DR, Vargas M (2014) A Geobacter sulfurreducens strain expressing pseudomonas aeruginosa type IV pili localizes OmcS on pili but is deficient in Fe(III) oxide reduction and current production. Appl Environ Microbiol 80:1219–1224

    Article  PubMed  PubMed Central  Google Scholar 

  35. Liu Y, Wang Z, Liu J, Levar C, Edwards MJ, Babauta JT, Kennedy DW, Shi Z, Beyenal H, Bond DR, Clarke TA, Butt JN, Richardson DJ, Rosso KM, Zachara JM, Fredrickson JK, Shi L (2014) A trans-outer membrane porin-cytochrome protein complex for extracellular electron transfer by Geobacter sulfurreducens PCA. Environ Microbiol Rep 6:776–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lloyd JR, Leang C, Hodges Myerson AL, Coppi MV, Cuifo S, Methe B, Sandler SJ, Lovley DR (2003) Biochemical and genetic characterization of PpcA, a periplasmic c-type cytochrome in Geobacter sulfurreducens. Biochem J 369:153–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lovley DR, Ueki T, Zhang T, Malvankar NS, Shrestha PM, Flanagan KA, Aklujkar M, Butler JE, Giloteaux L, Rotaru AE, Holmes DE, Franks AE, Orellana R, Risso C, Nevin KP (2011) Geobacter: the microbe electric’s physiology, ecology, and practical applications. Adv Microb Physiol 59:1–100

    Article  CAS  PubMed  Google Scholar 

  38. Malvankar NS, Lovley DR (2014) Microbial nanowires for bioenergy applications. Curr Opin Biotechnol 27:88–95

    Article  CAS  PubMed  Google Scholar 

  39. Malvankar NS, Mester T, Tuominen MT, Lovley DR (2012) Supercapacitors based on c-type cytochromes using conductive nanostructured networks of living bacteria. Chem Phys Chem 13:463–468

    CAS  PubMed  Google Scholar 

  40. McGinness KE, Baker TA, Sauer RT (2006) Engineering controllable protein degradation. Mol Cell 22:701–707

    Article  CAS  PubMed  Google Scholar 

  41. Mehta T, Coppi MV, Childers SE, Lovley DR (2005) Outer membrane c-type cytochromes required for Fe(III) and Mn(IV) oxide reduction in Geobacter sulfurreducens. Appl Environ Microbiol 71:8634–8641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Methe BA, Nelson KE, Eisen JA, Paulsen IT, Nelson W, Heidelberg JF, Wu D, Wu M, Ward N, Beanan MJ, Dodson RJ, Madupu R, Brinkac LM, Daugherty SC, DeBoy RT, Durkin AS, Gwinn M, Kolonay JF, Sullivan SA, Haft DH, Selengut J, Davidsen TM, Zafar N, White O, Tran B, Romero C, Forberger HA, Weidman J, Khouri H, Feldblyum TV, Utterback TR, Van Aken SE, Lovley DR, Fraser CM (2003) Genome of Geobacter sulfurreducens: metal reduction in subsurface environments. Science 302:1967–1969

    Article  CAS  PubMed  Google Scholar 

  43. Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  44. Nevin KP, Kim BC, Glaven RH, Johnson JP, Woodard TL, Methe BA, Didonato RJ, Covalla SF, Franks AE, Liu A, Lovley DR (2009) Anode biofilm transcriptomics reveals outer surface components essential for high density current production in Geobacter sulfurreducens fuel cells. PLoS One 4:e5628

    Article  PubMed  PubMed Central  Google Scholar 

  45. Nevin KP, Richter H, Covalla SF, Johnson JP, Woodard TL, Orloff AL, Jia H, Zhang M, Lovley DR (2008) Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells. Environ Microbiol 10:2505–2514

    Article  CAS  PubMed  Google Scholar 

  46. Ninfa AJ (2010) Use of two-component signal transduction systems in the construction of synthetic genetic networks. Curr Opin Microbiol 13:240–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Oberender J, Kung JW, Seifert J, von Bergen M, Boll M (2012) Identification and characterization of a succinyl-coenzyme A (CoA):benzoate CoA transferase in Geobacter metallireducens. J Bacteriol 194:2501–2508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435:1098–1101

    Article  CAS  PubMed  Google Scholar 

  49. Rodionov DA, Dubchak I, Arkin A, Alm E, Gelfand MS (2004) Reconstruction of regulatory and metabolic pathways in metal-reducing delta-proteobacteria. Genome Biol 5:R90

    Article  PubMed  PubMed Central  Google Scholar 

  50. Rollefson JB, Levar CE, Bond DR (2009) Identification of genes involved in biofilm formation and respiration via mini-Himar transposon mutagenesis of Geobacter sulfurreducens. J Bacteriol 191:4207–4217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rollefson JB, Stephen CS, Tien M, Bond DR (2011) Identification of an extracellular polysaccharide network essential for cytochrome anchoring and biofilm formation in Geobacter sulfurreducens. J Bacteriol 193:1023–1033

    Article  CAS  PubMed  Google Scholar 

  52. Ronkainen NJ, Halsall HB, Heineman WR (2010) Electrochemical biosensors. Chem Soc Rev 39:1747–1763

    Article  CAS  PubMed  Google Scholar 

  53. Sandler SJ, Clark AJ (1994) RecOR suppression of recF mutant phenotypes in Escherichia coli K-12. J Bacteriol 176:3661–3672

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Segura D, Mahadevan R, Juarez K, Lovley DR (2008) Computational and experimental analysis of redundancy in the central metabolism of Geobacter sulfurreducens. PLoS Comput Biol 4:e36

    Article  PubMed  PubMed Central  Google Scholar 

  55. Su L, Jia W, Hou C, Lei Y (2011) Microbial biosensors: a review. Biosens Bioelectron 26:1788–1799

    Article  CAS  PubMed  Google Scholar 

  56. TerAvest MA, Li ZJ, Angenent LT (2011) Bacteria-based biocomputing with cellular computing circuits to sense, decide, signal, and act. Energy Environ Sci 4:4907–4916

    Article  Google Scholar 

  57. Tremblay PL, Aklujkar M, Leang C, Nevin KP, Lovley D (2012) A genetic system for Geobacter metallireducens: role of the flagellin and pilin in the reduction of Fe(III) oxide. Environ Microbiol Rep 4:82–88

    Article  CAS  PubMed  Google Scholar 

  58. Tront JM, Fortner JD, Plotze M, Hughes JB, Puzrin AM (2008) Microbial fuel cell biosensor for in situ assessment of microbial activity. Biosens Bioelectron 24:586–590

    Article  CAS  PubMed  Google Scholar 

  59. Ueki T, Lovley DR (2010) Genome-wide gene regulation of biosynthesis and energy generation by a novel transcriptional repressor in Geobacter species. Nucleic Acids Res 38:810–821

    Article  CAS  PubMed  Google Scholar 

  60. Ueki T, Lovley DR (2010) Novel regulatory cascades controlling expression of nitrogen-fixation genes in Geobacter sulfurreducens. Nucleic Acids Res 38:7485–7499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Utsumi R, Brissette RE, Rampersaud A, Forst SA, Oosawa K, Inouye M (1989) Activation of bacterial porin gene expression by a chimeric signal transducer in response to aspartate. Science 245:1246–1249

    Article  CAS  PubMed  Google Scholar 

  62. van der Meer JR, Belkin S (2010) Where microbiology meets microengineering: design and applications of reporter bacteria. Nat Rev Microbiol 8:511–522

    Article  PubMed  Google Scholar 

  63. Vargas M, Malvankar NS, Tremblay PL, Leang C, Smith JA, Patel P, Snoeyenbos-West O, Nevin KP, Lovley DR (2013) Aromatic amino acids required for pili conductivity and long-range extracellular electron transport in Geobacter sulfurreducens. MBio 4:e00105–e00113

    Article  PubMed  PubMed Central  Google Scholar 

  64. Voordeckers JW, Kim BC, Izallalen M, Lovley DR (2010) Role of Geobacter sulfurreducens outer surface c-type cytochromes in reduction of soil humic acid and anthraquinone-2,6-disulfonate. Appl Environ Microbiol 76:2371–2375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wall ME, Hlavacek WS, Savageau MA (2004) Design of gene circuits: lessons from bacteria. Nat Rev Genet 5:34–42

    Article  CAS  PubMed  Google Scholar 

  66. Webster DP, TerAvest MA, Doud DF, Chakravorty A, Holmes EC, Radens CM, Sureka S, Gralnick JA, Angenent LT (2014) An arsenic-specific biosensor with genetically engineered Shewanella oneidensis in a bioelectrochemical system. Biosens Bioelectron 62:320–324

    Article  CAS  PubMed  Google Scholar 

  67. Wilson CJ, Zhan H, Swint-Kruse L, Matthews KS (2007) The lactose repressor system: paradigms for regulation, allosteric behavior and protein folding. Cell Mol Life Sci 64:3–16

    Article  CAS  PubMed  Google Scholar 

  68. Yun J, Malvankar NS, Ueki T, Lovley DR (2015) Functional environmental proteomics: elucidating the role of a c-type cytochrome abundant during uranium bioremediation. ISME J 10:310–320

    Article  PubMed  Google Scholar 

  69. Yun J, Ueki T, Miletto M, Lovley DR (2011) Monitoring the metabolic status of geobacter species in contaminated groundwater by quantifying key metabolic proteins with Geobacter-specific antibodies. Appl Environ Microbiol 77:4597–4602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang T, Tremblay PL, Chaurasia AK, Smith JA, Bain TS, Lovley DR (2014) Identification of genes specifically required for the anaerobic metabolism of benzene in Geobacter metallireducens. Front Microbiol 5:245

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank J. Ward for technical support. This work was supported by Semiconductor Research Corporation (SRC) SemiSynBio (SSB) Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Ueki.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 436 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ueki, T., Nevin, K.P., Woodard, T.L. et al. Genetic switches and related tools for controlling gene expression and electrical outputs of Geobacter sulfurreducens . J Ind Microbiol Biotechnol 43, 1561–1575 (2016). https://doi.org/10.1007/s10295-016-1836-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-016-1836-5

Keywords

Navigation