Skip to main content
Log in

Characterization of an evolved carotenoids hyper-producer of Saccharomyces cerevisiae through bioreactor parameter optimization and Raman spectroscopy

  • Fermentation, Cell Culture and Bioengineering
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

An evolutionary engineering approach for enhancing heterologous carotenoids production in an engineered Saccharomyces cerevisiae strain was used previously to isolate several carotenoids hyper-producers from the evolved populations. β-Carotene production was characterized in the parental and one of the evolved carotenoids hyper-producers (SM14) using bench-top bioreactors to assess the impact of pH, aeration, and media composition on β-carotene production levels. The results show that with maintaining a low pH and increasing the carbon-to-nitrogen ratio (C:N) from 8.8 to 50 in standard YNB medium, a higher β-carotene production level at 25.52 ± 2.15 mg β-carotene g−1 (dry cell weight) in the carotenoids hyper-producer was obtained. The increase in C:N ratio also significantly increased carotenoids production in the parental strain by 298 % [from 5.68 ± 1.24 to 22.58 ± 0.11 mg β-carotene g−1 (dcw)]. In this study, it was shown that Raman spectroscopy is capable of monitoring β-carotene production in these cultures. Raman spectroscopy is adaptable to large-scale fermentations and can give results in near real-time. Furthermore, we found that Raman spectroscopy was also able to measure the relative lipid compositions and protein content of the parental and SM14 strains at two different C:N ratios in the bioreactor. The Raman analysis showed a higher total fatty acid content in the SM14 compared with the parental strain and that an increased C:N ratio resulted in significant increase in total fatty acid content of both strains. The data suggest a positive correlation between the yield of β-carotene per biomass and total fatty acid content of the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ajikumar PK, Xiao WH, Tyo KE, Wang Y, Simeon F, Leonard E, Mucha O, Phon TH, Pfeifer B, Stephanopoulos G (2010) Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science 330:70–74. doi:10.1126/science.1191652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Alper H, Miyaoku K, Stephanopoulos G (2005) Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nat Biotechnol 23:612–616. doi:10.1038/nbt1083

    Article  CAS  PubMed  Google Scholar 

  3. Athamneh AIM, Alajlouni RA, Wallace RS, Seleem MN, Senger RS (2014) Phenotypic profiling of antibiotic response signatures in Escherichia coli using Raman spectroscopy. Antimicrob Agent Chemother 58:1302–1314. doi:10.1128/Aac.02098-13

    Article  CAS  Google Scholar 

  4. Braunwald T, Schwemmlein L, Graeff-Honninger S, French WT, Hernandez R, Holmes WE, Claupein W (2013) Effect of different C/N ratios on carotenoid and lipid production by Rhodotorula glutinis. Appl Microbiol Biotechnol 97:6581–6588. doi:10.1007/s00253-013-5005-8

    Article  CAS  PubMed  Google Scholar 

  5. Curran KA, Alper HS (2012) Expanding the chemical palate of cells by combining systems biology and metabolic engineering. Metab Eng 14:289–297. doi:10.1016/j.ymben.2012.04.006

    Article  CAS  PubMed  Google Scholar 

  6. Freedman BG, Zu TN, Wallace RS, Senger RS (2016) Raman spectroscopy detects phenotypic differences among E. coli enriched for 1-butanol tolerance using a metagenomic DNA library. Biotechnol J. doi:10.1002/biot.201500144

    PubMed  Google Scholar 

  7. Gu W-L, An G-H, Johnson E (1997) Ethanol increases carotenoid production in Phaffia rhodozyma. J Ind Microbiol Biotechnol 19:114–117

    Article  CAS  PubMed  Google Scholar 

  8. Heraud P, Beardall J, McNaughton D, Wood BR (2007) In vivo prediction of the nutrient status of individual microalgal cells using Raman microspectroscopy. FEMS Microbiol Lett 275:24–30. doi:10.1111/j.1574-6968.2007.00861.x

    Article  CAS  PubMed  Google Scholar 

  9. Holstein SA, Hohl RJ (2004) Isoprenoids: remarkable diversity of form and function. Lipids 39:293–309

    Article  CAS  PubMed  Google Scholar 

  10. Kampranis SC, Makris AM (2012) Developing a yeast cell factory for the production of terpenoids. Comput Struct Biotechnol J 3:e201210006. doi:10.5936/csbj.201210006

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kao KC, Sherlock G (2008) Molecular characterization of clonal interference during adaptive evolution in asexual populations of Saccharomyces cerevisiae. Nat Genet 40:1499–1504. doi:10.1038/ng.280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Katsuda Y (2012) Progress and future of pyrethroids. In: Matsuo N, Mori T (eds) Pyrethroids, vol 314. Topics in Current Chemistry. Springer Berlin, New york, pp 1–30. doi:10.1007/128_2011_252

    Google Scholar 

  13. Kimura K, Yamaoka M, Kamisaka Y (2004) Rapid estimation of lipids in oleaginous fungi and yeasts using Nile red fluorescence. J Microbiol Method 56:331–338. doi:10.1016/j.mimet.2003.10.018

    Article  CAS  Google Scholar 

  14. Li BY, Ray BH, Leister KJ, Ryder AG (2013) Performance monitoring of a mammalian cell based bioprocess using Raman spectroscopy. Anal Chim Acta 796:84–91. doi:10.1016/j.aca.2013.07.058

    Article  CAS  PubMed  Google Scholar 

  15. Li Q, Sun Z, Li J, Zhang Y (2013) Enhancing beta-carotene production in Saccharomyces cerevisiae by metabolic engineering. FEMS Microbiol Lett 345:94–101. doi:10.1111/1574-6968.12187

    Article  CAS  PubMed  Google Scholar 

  16. Lopez J, Essus K, Kim IK, Pereira R, Herzog J, Siewers V, Nielsen J, Agosin E (2015) Production of beta-ionone by combined expression of carotenogenic and plant CCD1 genes in Saccharomyces cerevisiae. Microb Cell Fact 14:84. doi:10.1186/s12934-015-0273-x

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mata-Gómez LC, Montanez JC, Mendez-Zavala A, CN Aguilar (2014) Biotechnological production of carotenoids by yeasts: an overview. Microb Cell Fact 13:1–11

    Article  Google Scholar 

  18. Matthaus F, Ketelhot M, Gatter M, Barth G (2014) Production of lycopene in the non-carotenoid-producing yeast Yarrowia lipolytica. Appl Environ Microbiol 80:1660–1669. doi:10.1128/AEM.03167-13

    Article  PubMed  PubMed Central  Google Scholar 

  19. Maury J, Asadollahi MA, Møller K, Clark A, Nielsen J (2005) Microbial isoprenoid production: an example of green chemistry through metabolic engineering. Adv Biochem Eng Biotechnol 100:19–51. doi:10.1007/b136410

    CAS  PubMed  Google Scholar 

  20. Meyer PS, du Preez JC (1993) Effect of acetic acid on astaxanthin production by Phaffia rhodozyma. Biotechnol Lett 15:919–924. doi:10.1007/bf00131757

    Article  CAS  Google Scholar 

  21. Nelis HJ, De Leenheer AP (1991) Microbial sources of carotenoid pigments used in foods and feeds. J Appl Bacteriol 70:181–191. doi:10.1111/j.1365-2672.1991.tb02922.x

    Article  CAS  Google Scholar 

  22. Notingher L, Jell G, Notingher PL, Bisson I, Tsigkou O, Polak JM, Stevens MM, Hench LL (2005) Multivariate analysis of Raman spectra for in vitro non-invasive studies of living cells. J Mol Struct 744:179–185. doi:10.1016/j.molstruc.2004.12.046

    Article  Google Scholar 

  23. Ozaydin B, Burd H, Lee TS, Keasling JD (2013) Carotenoid-based phenotypic screen of the yeast deletion collection reveals new genes with roles in isoprenoid production. Metab Eng 15:174–183. doi:10.1016/j.ymben.2012.07.010

    Article  CAS  PubMed  Google Scholar 

  24. Ratledge C, Cohen Z (2008) Microbial and algal oils: do they have a future for biodiesel or as commodity oils? Lipid Technol 20:155–160. doi:10.1002/lite.200800044

    Article  Google Scholar 

  25. Reyes LH, Gomez JM, Kao KC (2014) Improving carotenoids production in yeast via adaptive laboratory evolution. Metab Eng 21:26–33. doi:10.1016/j.ymben.2013.11.002

    Article  CAS  PubMed  Google Scholar 

  26. Ro D-K, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MCY, Withers ST, Shiba Y, Sarpong R, Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943. doi:10.1038/nature04640

    Article  CAS  PubMed  Google Scholar 

  27. Sacchettini JC, Poulter CD (1997) Creating isoprenoid diversity. Science 277:1788–1789

    Article  CAS  PubMed  Google Scholar 

  28. Sitepu IR, Ignatia L, Franz AK, Wong DM, Faulina SA, Tsui M, Kanti A, Boundy-Mills K (2012) An improved high-throughput Nile red fluorescence assay for estimating intracellular lipids in a variety of yeast species. J Microbiol Method 91:321–328. doi:10.1016/j.mimet.2012.09.001

    Article  CAS  Google Scholar 

  29. Starkley RL (1945) Lipid production by a soil yeast. J Bacteriol 51:33–50

    Google Scholar 

  30. Tschirner N, Schenderlein M, Brose K, Schlodder E, Mroginski MA, Thomsen C, Hildebrandt P (2009) Resonance Raman spectra of beta-carotene in solution and in photosystems revisited: an experimental and theoretical study. Phys Chem Chem Phys 11:11471–11478. doi:10.1039/b917341b

    Article  CAS  PubMed  Google Scholar 

  31. Verwaal R, Wang J, Meijnen JP, Visser H, Sandmann G, van den Berg JA, van Ooyen AJ (2007) High-level production of β-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous. Appl Environ Microbiol 73:4342–4350. doi:10.1128/AEM.02759-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zu TNK, Athamneh AIM, Wallace RS, Collakova E, Senger RS (2014) Near-real-time analysis of the phenotypic responses of Escherichia coli to 1-butanol exposure using Raman spectroscopy. J Bacteriol 196:3983–3991. doi:10.1128/Jb.01590-14

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was funded in part by National Science Foundation NSF MCB-1054276. The authors wish to thank Dr. Alim Dewan and Professor M. Nazmul Karim for their assistance with the bioreactor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katy C. Kao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM1 (DOCX 242 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olson, M.L., Johnson, J., Carswell, W.F. et al. Characterization of an evolved carotenoids hyper-producer of Saccharomyces cerevisiae through bioreactor parameter optimization and Raman spectroscopy. J Ind Microbiol Biotechnol 43, 1355–1363 (2016). https://doi.org/10.1007/s10295-016-1808-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-016-1808-9

Keywords

Navigation