Skip to main content
Log in

Bi-substrate Kinetic Analysis of Acyl Transfer Activity of Purified Amidase from Pseudomonas putida BR-1

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Amidase of Pseudomonas putida BR-1 having acyl transfer activity (ATA) was purified up to 2.9-fold with 23.2 % yield using ammonium sulfate fractionation, gel permeation and anion exchange chromatography. The SDS-PAGE analysis of the purified enzyme revealed that this enzyme is consisting of α- and β-subunits with molecular masses of 55 and 48 kDa, respectively and the molecular mass of holoenzyme was estimated to be 128 kDa. Total 2.3-fold increase in ATA was observed after optimization of reaction conditions for purified enzyme (sodium phosphate buffer 0.125 M, pH 7.5, temperature 50 °C). The purified amidase of P. putida BR-1 has K mA (226 mM) and V max (71 µmol/min/mg protein) with nicotinamide and K mB (995 mM) and V max (806 µmol/min/mg protein) for hydroxylamine. This enzyme has very high potential for biotransformation of N-substituted aromatic amides and for the production of a variety of hydroxamic acids.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fournand D, Bigey F, Arnaud A (1998) Appl Environ Microbiol 64:2844–2852

    CAS  Google Scholar 

  2. Sharma NN, Sharma M, Bhalla TC (2009) Rev Environ Sci Biotechnol 8:343–366

    Article  CAS  Google Scholar 

  3. Bhatia SK, Mehta PK, Bhatia RK, Bhalla TC (2012) Bioprocess Biosyst Eng 36:613–625

    Article  Google Scholar 

  4. Kumar V, Bhalla TC (2013) Biocatal Biotransform 31:42–48

    Article  Google Scholar 

  5. Bhatia RK, Bhatia SK, Mehta PK, Bhalla TC (2013) Ind Microbiol Biotechnol 40:21–27

    Article  CAS  Google Scholar 

  6. Brammar WJ, Clarke PH (1964) J Gen Microbiol 37:307–319

    Article  CAS  Google Scholar 

  7. Bradford MM (1976) Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  8. Henderson PJF (1993) Statistical analysis of enzyme kinetic data. In: Eisenthal R, Danson MJ (eds) Enzyme assays: a practical approach. Oxford University Press Inc., New York, pp 277–316

    Google Scholar 

  9. Shen W, Chen H, Jia K, Ni J, Yan X, Li S (2012) Appl Microbiol Biotechnol 94:1007–1018

    Article  CAS  Google Scholar 

  10. Caubin J, Martin H, Roa A, Cosano I, Pozuelo M, de La Fuente JM, Sanchez-Puelles JM, Molina M, Nombela C (2001) Biotechnol Bioeng 74:164–171

    Article  CAS  Google Scholar 

  11. Ciskanik LM, Wilczek JM, Fallon RD (1995) Appl Environ Microbiol 61:998–1003

    CAS  Google Scholar 

  12. Komeda H, Harada H, Washika S, Sakamoto T, Ueda M, Asano Y (2004) Eur J Biochem 271:1580–1590

    Article  CAS  Google Scholar 

  13. Wang YS, Cheng F, Zheng RC, Wang YJ, Zheng YG (2011) World J Microbiol Biotechnol 27:2885–2892

    Article  CAS  Google Scholar 

  14. Mehta PK, Bhatia SK, Bhatia RK, Bhalla TC (2013) Extremophiles 17:637–648

    Article  CAS  Google Scholar 

  15. Baek DH, Song JJ, Lee SG, Kwon SJ, Asano Y, Sung MH (2003) Enz Microbiol Technol 32:131–139

    Article  CAS  Google Scholar 

  16. Egorova K, Trauthwein H, Verseck S, Antranikian G (2004) Appl Microbiol Biotechnol 65:38–45

    CAS  Google Scholar 

  17. Komeda H, Hariyama N, Asano Y (2006) Appl Microbiol Biotechnol 70:412–421

    Article  CAS  Google Scholar 

  18. Adamczak M, Krishna SH (2004) Food Technol Biotechnol 42:251–264

    CAS  Google Scholar 

  19. Heumann S, Eberl A, Fischer-Colbrie G, Pobeheim H, Kaufmann F, Ribitsch D, Cavaco-Paulo A, Guebitz GM (2009) Biotechnol Bioeng 102:1003–1011

    Article  CAS  Google Scholar 

  20. d’Abusco SA, Ammendola S, Scandurra R, Politi L (2001) Extremophiles 5:183–192

    Article  Google Scholar 

  21. Suzuki Y, Ohta H (2006) Protein Expres Purif 45:368–373

    Article  CAS  Google Scholar 

  22. Andrade J, Karmali A, Carrondo MA, Frazao C (2007) J Biol Chem 282:19598–19605

    Article  CAS  Google Scholar 

  23. Bhatia SK, Bhatia RK, Mehta PK, Bhalla TC (2014) Biotechnol Appl Biochem. doi:10.1002/bab.1192

    Google Scholar 

  24. Bhatia SK, Bhatia RK, Mehta PK, Bhalla TC (2014) 3 Biotech 4:375–381

    Article  Google Scholar 

  25. Kobayashi M, Komeda H, Nagasawa T, Nishiyama M, Horinouchi S, Beppu T, Yamada H, Shimizu S (1993) Euro J Biochem 217:327–336

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the University Grants Commission, India for providing financial support in the form of Senior Research Fellowship to Mr. Ravi Kant Bhatia and Vijay Kumar, and Department of Biotechnology, for providing Senior Research Fellowship to Mr. Shashi Kant Bhatia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tek Chand Bhalla.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 51 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatia, R.K., Bhatia, S.K., Kumar, V. et al. Bi-substrate Kinetic Analysis of Acyl Transfer Activity of Purified Amidase from Pseudomonas putida BR-1. Catal Lett 145, 1033–1040 (2015). https://doi.org/10.1007/s10562-014-1467-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-014-1467-2

Keywords

Navigation