Skip to main content
Log in

The effects of putative lipase and wax ester synthase/acyl-CoA:diacylglycerol acyltransferase gene knockouts on triacylglycerol accumulation in Gordonia sp. KTR9

  • Bioenergy/Biofuels/Biochemicals
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Previously, we demonstrated triacylglycerol (TAG) accumulation and the in vivo ability to catalyze esters from exogenous short chain alcohol sources in Gordonia sp. strain KTR9. In this study, we investigated the effects that putative lipase (KTR9_0186) and wax ester synthase/acyl-CoA:diacylglycerol acyltransferase (WS/DGAT; KTR9_3844) gene knockouts had on TAG accumulation. Gene disruption of KTR9_0186 resulted in a twofold increase in TAG content in nitrogen starved cells. Lipase mutants subjected to carbon starvation, following nitrogen starvation, retained 75 % more TAGs and retained pigmentation. Transcriptome expression data confirmed the deletion of KTR9_0186 and identified the up-regulation of key genes involved in fatty acid degradation, a likely compensatory mechanism for reduced TAG mobilization. In vitro assays with purified KTR9_3844 demonstrated WS/DGAT activity with short chain alcohols and C16 and C18 fatty acid Co-As. Collectively, these results indicate that Gordonia sp. KTR9 has a suitable tractable genetic background for TAG production as well as the enzymatic capacity to catalyze fatty acid esters from short chain alcohols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alvarez AF, Alvarez HM, Kalscheuer R, Waltermann M, Steinbuchel A (2008) Cloning and characterization of a gene involved in triacylglycerol biosynthesis and identification of additional homologous genes in the oleaginous bacterium Rhodococcus opacus PD630. Microbiology 154:2327–2335

    Article  CAS  PubMed  Google Scholar 

  2. Alvarez HM, Steinbuchel A (2002) Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol 60:367–376

    Article  CAS  PubMed  Google Scholar 

  3. Arabolaza A, Rodriguez E, Altabe S, Alvarez H, Gramajo H (2008) Multiple pathways for triacylglycerol biosynthesis in Streptomyces coelicolor. Appl Environ Microbiol 74:2573–2582

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Arenskotter M, Baumeister D, Kalscheuer R, Steinbuchel A (2003) Identification and application of plasmids suitable for transfer of foreign DNA to members of the genus Gordonia. Appl Environ Microbiol 69:4971–4974

    Article  PubMed Central  PubMed  Google Scholar 

  5. Banh Q, Arenskotter M, Steinbuchel A (2005) Establishment of Tn5096-based transposon mutagenesis in Gordonia polyisoprenivorans. Appl Environ Microbiol 71:5077–5084

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Barney BM, Wahlen BD, Garner E, Wei J, Seefeldt LC (2012) Differences in substrate specificities of five bacterial wax ester synthases. Appl Environ Microbiol 78:5734–5745

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Blaby IK, Glaesener AG, Mettler T, Fitz-Gibbon ST, Gallaher SD, Liu B, Boyle NR, Kropat J, Stitt M, Johnson S, Benning C, Pellegrini M, Casero D, Merchant SS (2013) Systems-level analysis of nitrogen starvation-induced modifications of carbon metabolism in a Chlamydomonas reinhardtii starchless mutant. Plant Cell 25:4305–4323

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Boyle NR, Page MD, Liu B, Blaby IK, Casero D, Kropat J, Cokus SJ, Hong-Hermesdorf A, Shaw J, Karpowicz SJ, Gallaher SD, Johnson S, Benning C, Pellegrini M, Grossman A, Merchant SS (2012) Three acyltransferases and nitrogen-responsive regulator are implicated in nitrogen starvation-induced triacylglycerol accumulation in Chlamydomonas. J Biol Chem 287:15811–15825

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Chen HP, Zhu SH, Casabon I, Hallam SJ, Crocker FH, Mohn WW, Indest KJ, Eltis LD (2012) Genomic and transcriptomic studies of an RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine)-degrading actinobacterium. Appl Environ Microbiol 78:7798–7800

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Clomburg JM, Gonzalez R (2010) Biofuel production in Escherichia coli: the role of metabolic engineering and synthetic biology. Appl Microbiol Biotechnol 86(2):419–434

    Article  CAS  PubMed  Google Scholar 

  11. Daniel J, Deb C, Dubey VS, Sirakova TD, Abomoelak B, Morbidoni HR, Kolattukudy PE (2004) Induction of a novel class of diacylglycerol acyltransferases and triacylglycerol accumulation in Mycobacterium tuberculosis as it goes into a dormancy-like state in culture. J Bacteriol 186:5017–5030

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Deb C, Daniel J, Sirakova TD, Abomoelak B, Dubey VS, Kolattukudy PE (2006) A novel lipase belonging to the hormone-sensitive lipase family induced under starvation to utilize stored triacylglycerol in Mycobacterium tuberculosis. J Biol Chem 281:3866–3875

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Ding Y, Yang L, Zhang S, Wang Y, Du Y, Pu J, Peng G, Chen Y, Zhang H, Yu J, Hang H, Wu P, Yang F, Yang H, Steinbuchel A, Liu P (2012) Identification of the major functional proteins of prokaryotic lipid droplets. J Lipid Res 53:399–411

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Eberly JO, Ringelberg DB, Indest KJ (2013) Physiological characterization of lipid accumulation and in vivo ester formation in Gordonia sp. KTR9. J Ind Microbiol Biotechnol 40:201–208

    Article  CAS  PubMed  Google Scholar 

  15. Fan J, Yan C, Andre C, Shanklin J, Schwender J, Xu C (2012) Oil accumulation is controlled by carbon precursor supply for fatty acid synthesis in Chlamydomonas reinhardtii. Plant Cell Physiol 53:1380–1390

    Article  CAS  PubMed  Google Scholar 

  16. Gouda MK (2008) Single cell oil production by Gordonia sp. DG using agro-industrial wastes. World J Microbiol Biotechnol 24:1703–1711

    Article  CAS  Google Scholar 

  17. Hernandez MA, Arabolaza A, Rodriguez E, Gramajo H, Alvarez HM (2013) The atf2 gene is involved in triacylglycerol biosynthesis and accumulation in the oleaginous Rhodococcus opacus PD630. Appl Microbiol Biotechnol 97:2119–2130

    Article  CAS  PubMed  Google Scholar 

  18. Indest KJ, Hancock DE, Jung CM, Eberly JO, Mohn WW, Eltis LD, Crocker FH (2013) Role of nitrogen limitation in transformation of RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) by Gordonia sp. strain KTR9. Appl Environ Microbiol 79:1746–1750

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Li X, Benning C, Kuo MH (2012) Rapid triacylglycerol turnover in Chlamydomonas reinhardtii requires a lipase with broad substrate specificity. Eukaryot Cell 11:1451–1462

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. MacEachran DP, Sinskey AJ (2013) The Rhodococcus opacus TadD protein mediates triacylglycerol metabolism by regulating intracellular NAD(P)H pools. Microb Cell Fact 12:104–108

    Article  PubMed Central  PubMed  Google Scholar 

  21. McFie PJ, Stone SJ (2011) A fluorescent assay to quantitatively measure in vitro acyl CoA:diacylglycerol acyltransferase activity. J Lipid Res 52:1760–1764

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Miller R, Wu G, Deshpande RR, Vieler A, Gartner K, Li X, Moellering ER, Zauner S, Cornish AJ, Liu B, Bullard B, Sears BB, Kuo MH, Hegg EL, Shachar-Hill Y, Shiu SH, Benning C (2010) Changes in transcript abundance in Chlamydomonas reinhardtii following nitrogen deprivation predict diversion of metabolism. Plant Physiol 154:1737–1752

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Santala S, Efimova E, Kivinen V, Larjo A, Aho T, Karp M, Santala V (2011) Improved triacylglycerol production in Acinetobacter baylyi ADP1 by metabolic engineering. Microb Cell Fact 10:36–45

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Schafer A, Tauch A, Jager W, Kalinowski J, Thierbach G, Puhler A (1994) Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69–73

    Article  CAS  PubMed  Google Scholar 

  25. Shi S, Valle-Rodriguez JO, Khoomrung S, Siewers V, Nielsen J (2012) Functional expression and characterization of five wax ester synthases in Saccharomyces cerevisiae and their utility for biodiesel production. Biotechnol Biofuels 5:7–14

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Stoveken T, Kalscheuer R, Malkus U, Reichelt R, Steinbuchel A (2005) The wax ester synthase/acyl coenzyme A:diacylglycerol acyltransferase from Acinetobacter sp. strain ADP1: characterization of a novel type of acyltransferase. J Bacteriol 187:1369–1376

    Article  PubMed Central  PubMed  Google Scholar 

  27. Thompson KT, Crocker FH, Fredrickson HL (2005) Mineralization of the cyclic nitramine explosive hexahydro-1,3,5-trinitro-1,3,5-triazine by Gordonia and Williamsia spp. Appl Environ Microbiol 71:8265–8272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Urbano SB, Di Capua C, Cortez N, Farias ME, Alvarez HM (2014) Triacylglycerol accumulation and oxidative stress in Rhodococcus species: differential effects of pro-oxidants on lipid metabolism. Extremophiles 18:375–384

    Article  CAS  PubMed  Google Scholar 

  29. Uthoff S, Stoveken T, Weber N, Vosmann K, Klein E, Kalscheuer R, Steinbuchel A (2005) Thio wax ester biosynthesis utilizing the unspecific bifunctional wax ester synthase/acyl coenzyme A:diacylglycerol acyltransferase of Acinetobacter sp. strain ADP1. Appl Environ Microbiol 71:790–796

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. van der GR, Hessels GI, van Gerwen R, van der MP, Dijkhuizen L (2001) Unmarked gene deletion mutagenesis of kstD, encoding 3-ketosteroid Delta1-dehydrogenase, in Rhodococcus erythropolis SQ1 using sacB as counter-selectable marker FEMS Microbiol Lett 205:197–202

  31. Waltermann M, Steinbuchel A (2005) Neutral lipid bodies in prokaryotes: recent insights into structure, formation, and relationship to eukaryotic lipid depots. J Bacteriol 187:3607–3619

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded through the US Army Engineer Research and Development Center's Basic Research Program (Project 10–50, K. J. Indest). Views, opinions and/or findings contained herein are those of the authors and should not be construed as an official Department of the Army position or decision unless so designated by other official documentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl J. Indest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Indest, K.J., Eberly, J.O., Ringelberg, D.B. et al. The effects of putative lipase and wax ester synthase/acyl-CoA:diacylglycerol acyltransferase gene knockouts on triacylglycerol accumulation in Gordonia sp. KTR9. J Ind Microbiol Biotechnol 42, 219–227 (2015). https://doi.org/10.1007/s10295-014-1552-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-014-1552-y

Keywords

Navigation