Skip to main content
Log in

Improved conversion efficiencies for n-fatty acid reduction to primary alcohols by the solventogenic acetogen “Clostridium ragsdalei

  • Bioenergy/Biofuels/Biochemicals
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Clostridium ragsdalei” is an acetogen that ferments synthesis gas (syngas, predominantly H2:CO2:CO) to ethanol, acetate, and cell mass. Previous research showed that C. ragsdalei could also convert propionic acid to 1-propanol and butyric acid to 1-butanol at conversion efficiencies of 72.3 and 21.0 percent, respectively. Our research showed that C. ragsdalei can also reduce pentanoic and hexanoic acid to the corresponding primary alcohols. This reduction occurred independently of growth in an optimized medium with headspace gas exchange (vented and gassed with CO) every 48 h. Under these conditions, conversion efficiencies increased to 97 and 100 % for propionic and butyric acid, respectively. The conversion efficiencies for pentanoic and hexanoic acid to 1-pentanol and 1-hexanol, respectively, were 82 and 62 %. C. ragsdalei also reduced acetone to 2-propanol at a conversion efficiency of 100 %. Further, we showed that C. ragsdalei uses an aldehyde oxidoreductase-like enzyme to reduce n-fatty acids to the aldehyde intermediates in a reaction that requires ferredoxin and exogenous CO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Allen TD, Caldwell ME, Lawson PA, Huhnke RL, Tanner RS (2010) Alkalibaculum bacchi gen. nov., sp. nov., a CO-oxidizing, ethanol-producing acetogen isolated from livestock-impacted soil. Int J Syst Evol Microbiol 60:2483–2489

    Article  CAS  PubMed  Google Scholar 

  2. Balch WE, Wolfe RS (1976) New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HSCoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. Appl Environ Microbiol 32:781–791

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K (2012) Engineering the third wave of biocatalysis. Nature 485:185–194

    Article  CAS  PubMed  Google Scholar 

  4. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  5. Bruant G, Lévesque M-J, Peter C, Guiot SR, Masson L (2010) Genomic analysis of carbon monoxide utilization and butanol production by Clostridium carboxidivorans strain P7T. PLoS One 5:313033

    Article  Google Scholar 

  6. Chen J-S, Blanchard DK (1979) A simple hydrogenase-linked assay for ferredoxin and flavodoxin. Anal Biochem 93:216–222

    Article  CAS  PubMed  Google Scholar 

  7. Coyle W (2007) The future of biofuels. Economic Res Service/USDA, Washington

    Google Scholar 

  8. Drake HL, Kusel K, Matthies C (2006) Acetogenic prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Shleifer K-H, Stackebrandt E (eds) The Prokaryotes, 3rd edn. Springer, Berlin, pp 354–420

    Chapter  Google Scholar 

  9. EIA (2012) Annual Energy Outlook 2012. Energy Information Administration. Report No: DOE/EIA-0383(2012)

  10. Fraisse L, Simon H (1988) Observations on the reduction of non-activated carboxylates by Clostridium formicoaceticum with carbon monoxide or formate and the influence of various viologens. Arch Microbiol 150:381–386

    Article  CAS  Google Scholar 

  11. Granberg RA, Rasmuson ÅC (1999) Solubility of paracetamol in pure solvents. J Chem Eng Data 44:1391–1395

    Article  CAS  Google Scholar 

  12. Henstra AM, Sipma J, Rinzema A, Stams AJM (2007) Microbiology of synthesis gas fermentation for biofuel production. Curr Op Biotech 18:200–206

    Article  CAS  Google Scholar 

  13. Hüsemann MHW, Papoutsakis ET (1990) Effects of propionate and acetate additions on solvent production in batch cultures of Clostridium acetobutylicum. Appl Environ Microbiol 56:1497–1500

    PubMed Central  PubMed  Google Scholar 

  14. IEA (2009) Key world energy statistics. Internation Energy Agency, Paris

    Google Scholar 

  15. Kenealy WR, Waselefsky DM (1985) Studies on the substrate range of Clostridium kluyveri; the use of propanol and succinate. Arch Microbiol 141:187–194

    Article  CAS  Google Scholar 

  16. Kirschner M (2006) n-Butanol. Chem Mark Rep 269:42

    Google Scholar 

  17. Köpke M, Held C, Hujer S, Liesegang H, Wiezer A, Wollherr A, Ehrenreich A, Liebl W, Gottschalk G, Dürre P (2010) Clostridium ljungdahlii represents a microbial production platform based on syngas. PNAS 107:13087–13092

    Article  PubMed Central  PubMed  Google Scholar 

  18. Liou JS, Balkwill DL, Drake GR, Tanner RS (2005) Clostridium carboxidivorans sp. nov., a solvent-producing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov. Int J Syst Evol Microbiol 55:2085–2091

    Article  CAS  PubMed  Google Scholar 

  19. Liu K, Atiyeh HK, Stevenson BS, Tanner RS, Wilkins MR, Huhnke RL (2014) Mixed culture syngas fermentation and conversion of carboxylic acids into alcohols. Biores Tech 152:337–346

    Article  CAS  Google Scholar 

  20. Marchler-Bauer A et al (2013) CDD: conserved domains and protein three-dimensional structure. Nucleic Acids Res 41:D384

    Article  Google Scholar 

  21. Markowitz VM et al (2014) IMG 4 version of the integrated microbial genomes comparative analysis system. Nucl Acids Res 42:D560–D567. http://img.jgi.doe.gov/er

  22. Perez JM, Richter H, Loftus SE, Angenent LT (2012) Biocatalytic reduction of short-chain carboxylic acids into their corresponding alcohols with syngas fermentation. Biotechnol Bioeng 110:1066–1077

    Article  Google Scholar 

  23. Pierce E, Xie G, Barabote RD, Saunders E, Han CS, Detter JC, Richardson P, Brettin TS, Das A, Ljungdahl LG, Ragsdale SW (2008) The complete genome sequence of Moorella thermoacetica (f. Clostridium thermoaceticum). Env Microbiol 10:2550–2573

    Article  CAS  Google Scholar 

  24. Ramachandriya KD, Wilkins MR, Delorme MJM, Zhu X, Kundiyana DK, Atiyeh HK, Huhnke RL (2011) Reduction of acetone to isopropanol using producer gas fermenting microbes. Biotechnol Bioeng 108:2330–2338

    Article  CAS  PubMed  Google Scholar 

  25. Ridjan I, Mathiesen BV, Connolly D (2014) Synthetic fuel production costs by means of solid oxide electrolysis cells. Energy 76:104–113

    Article  CAS  Google Scholar 

  26. Saxena JS, Tanner RS (2010) Effect of trace metals on ethanol production from synthesis gas by the ethanologenic acetogens, Clostridium ragsdalei. J Ind Microbiol Biotechnol 38:513–521

    Article  PubMed  Google Scholar 

  27. Sheih J, Whitman WB (1988) Autotrophic acetyl coenzyme A biosynthesis in Methanococcus maripaludis. J Bacteriol 170:3072–3079

    Google Scholar 

  28. Simon H, White H, Lebertz H, Thanos I (1987) Reduction of 2-enoates and alkanoates with carbon monoxide or formate, viologens, and Clostridium thermoaceticum to saturated acids and unsaturated alcohols. Angew Chem Int Ed Engl 26:785–787

    Article  Google Scholar 

  29. Simon H, Lebertz H (1989) Microbial reduction of monocarboxylic and dicarboxylic acids in the presence of carbon monoxide and/or formates plus mediators. United States Patent No. 4, 851, 344

  30. Steinbusch KJJ, Hamelers HVM, Buisman CJN (2008) Alcohol production through volatile fatty acid reduction with hydrogen as electron donor by mixed cultures. Water Res 42:4059–4066

    Article  CAS  PubMed  Google Scholar 

  31. Steinbusch KJJ, Arvaniti E, Hamelers HVM, Buisman CJN (2009) Selective inhibition of methanogenesis to enhance ethanol and n-butyrate production through acetate reduction in mixed culture fermentation. Biores Technol 100:3261–3267

    Article  CAS  Google Scholar 

  32. Strobl G, Feicht R, White H, Lottspeich F, Simon H (1992) The tungsten-containing aldehyde oxidreductase from Clostridium thermoaceticum and its complex with a viologen-accepting NADPH oxidoreductase. Biol Chem Hoppe-Seyler 373:123–132

    Article  CAS  PubMed  Google Scholar 

  33. Tanner RS (2007) Cultivation of bacteria and fungi. In: Hurst CJ, Crawford RL, Mills AL, Garland JL, Stetzenbach LD, Lipson DA (eds) Manual of environmental microbiology, 3rd edn. ASM Press, Washington, pp 69–78

    Google Scholar 

  34. Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Tilman D, Socolow R, Foley JA, Hill J, Larson E, Lynd L, Pacala S, Reilly J, Searchinger T, Somerville C, Williams C (2009) Beneficial biofuels: the food, energy, and environment trilemma. Science 325:270–271

    Article  CAS  PubMed  Google Scholar 

  36. Wang S, Zhang Y, Dong H, Mao S, Zhu Y, Wang R, Juan G, Li Y (2011) Formic acid triggers the “acid crash” of acetone-butanol-ethanol fermentation by Clostridium acetobutylicum. Appl Environ Microbiol 77:1674–1680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. White H, Huber C, Feicht R, Simon H (1993) On a reversible molybdenum-containing aldehyde oxidoreductase from Clostridium formicoaceticum. Arch Microbiol 159:244–249

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported in part by the USDA-CSREES special research grant award. The authors thank Jarrod Warnock and Dr. Ravindranath Garimella for collecting NMR spectra. The authors also thank Dr. Elizabeth Karr for in vitro protein work and Dr. Johannes Kung for collecting acyl-CoA spectra (Supplmental Data).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine E. Isom.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isom, C.E., Nanny, M.A. & Tanner, R.S. Improved conversion efficiencies for n-fatty acid reduction to primary alcohols by the solventogenic acetogen “Clostridium ragsdalei”. J Ind Microbiol Biotechnol 42, 29–38 (2015). https://doi.org/10.1007/s10295-014-1543-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-014-1543-z

Keywords

Navigation