Skip to main content
Log in

Interactions between carbon and nitrogen sources depend on RIM15 and determine fermentative or respiratory growth in Saccharomyces cerevisiae

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Nutritional homeostasis is fundamental for alcoholic fermentation in Saccharomyces cerevisiae. Carbon and nitrogen have been related to this metabolic process; nevertheless, little is known about their interactions with the media and the energetic metabolism. Rim15p kinase is a point of convergence among different nutrient-activated signaling pathways; this makes it a target to investigate the relationship between nutritional status and energetic metabolism. To improve the current knowledge of nutrient interactions and their association with RIM15, we validated the doubling time as an indicator of growth phenotype, confirming that this kinetic parameter can be related to the cellular bioenergetic status. This endorses the usefulness of a threshold in doubling time values as an indicator of fermentative (≤ 6.5 h) and respiratory growth (≥ 13.2 h). Using the doubling time as response variable, we find that (i) two second-order interactions between type and concentration of carbon and nitrogen sources significantly affected the growth phenotype of S. cerevisiae; (ii) these metabolic interactions changed when RIM15 was deleted, suggesting a dependence on this gene; (iii) high concentration of ammonium (5% w/v) is toxic for S. cerevisiae cells; (iv) proline prompted fermentative growth phenotype regardless presence or absence of RIM15; (v) RIM15 deletion reverted ammonium toxicity when cells were grown in glucose (10% w/v); and (vi) RIM15 deletion improves fermentative metabolism probably by a partial inhibition of the respiration capacity. This study reveals the existence of synergic and diverse roles of carbon and nitrogen sources that are affected by RIM15, influencing the fermentative and respiratory growth of S. cerevisiae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abernathy DG, Spedding G, Starcher B (2009) Analysis of protein and total usable nitrogen in beer and wine using a microwell ninhydrin assay. J Inst Brew 115:122–127

    Article  CAS  Google Scholar 

  • Alberghina L, Mavelli G, Drovandi G, Palumbo P, Pessina S, Tripodi F, Coccetti P, Vanoni M (2012) Cell growth and cell cycle in Saccharomyces cerevisiae: basic regulatory design and protein–protein interaction network. Biotechnol Adv 30:52–72

    Article  PubMed  CAS  Google Scholar 

  • Albers E, Larsson C, Lidén G, Niklasson C, Gustafsson L (1996) Influence of the nitrogen source on Saccharomyces cerevisiae anaerobic growth and product formation. Appl Environ Microbiol 62:3187–3195

    PubMed  PubMed Central  CAS  Google Scholar 

  • Batista AS, Miletti LC, Stambuk BU (2005) Sucrose fermentation by Saccharomyces cerevisiae lacking hexose transport. J Mol Microbiol Biotechnol 8:26–33

    Article  CAS  Google Scholar 

  • Berthels N, Corderootero R, Bauer F, Thevelein J, Pretorius I (2004) Discrepancy in glucose and fructose utilisation during fermentation by wine yeast strains. FEMS Yeast Res 4:683–689

    Article  PubMed  CAS  Google Scholar 

  • Bertram PG, Choi JH, Carvalho J, Chan T-F, Ai W, Zheng XFS (2002) Convergence of TOR-nitrogen and Snf1-glucose signaling pathways onto Gln3. Mol Cell Biol 22:1246–1252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bokulich NA, Bamforth CW (2013) The microbiology of malting and brewing. Microbiol Mol Biol Rev 77:157–172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brand MD, Nicholls DG (2011) Assessing mitochondrial dysfunction in cells. Biochem J 435:297–312

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brandriss MC, Magasanik B (1979) Genetics and physiology of proline utilization in Saccharomyces cerevisiae: enzyme induction by proline. J Bacteriol 140:498–503

    PubMed  PubMed Central  CAS  Google Scholar 

  • Brice C, Sanchez I, Bigey F, Legras J-L, Blondin B (2014) A genetic approach of wine yeast fermentation capacity in nitrogen-starvation reveals the key role of nitrogen signaling. BMC Genomics 15:495

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van den Brink J, Canelas AB, van GWM, Pronk JT, Heijnen JJ, de WJH, Daran-Lapujade P (2008) Dynamics of glycolytic regulation during adaptation of Saccharomyces cerevisiae to fermentative metabolism. Appl Environ Microbiol 74:5710–5723

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clement T, Perez M, Mouret JR, Sanchez I, Sablayrolles JM, Camarasa C (2013) Metabolic responses of Saccharomyces cerevisiae to valine and ammonium pulses during four-stage continuous wine fermentations. Appl Environ Microbiol 79:2749–2758

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Conrad M, Schothorst J, Kankipati HN, Zeebroeck GV, Rubio-Texeira M, Thevelein JM (2014) Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 38:254–299

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cooper TG (1982) Nitrogen metabolism in Saccharomyces cerevisiae. Cold Spring Harb Monogr Arch 11:39–99

    Google Scholar 

  • Crabtree HG (1929) Observations on the carbohydrate metabolism of tumours. Biochem J 23:536–545

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Crauwels M, Donaton MC, Pernambuco MB, Winderickx J, de Winde JH, Thevelein JM (1997) The Sch9 protein kinase in the yeast Saccharomyces cerevisiae controls cAPK activity and is required for nitrogen activation of the fermentable-growth-medium-induced (FGM) pathway. Microbiology 143:2627–2637

    Article  PubMed  CAS  Google Scholar 

  • Cruz SH, Cilli EM, Ernandes JR (2002) Structural complexity of the nitrogen source and influence on yeast growth and fermentation. J Inst Brew 108:54–61

    Article  Google Scholar 

  • Daran-Lapujade P, Rossell S, van Gulik WM, Luttik MA, de Groot MJ, Slijper M, Heck AJ, Daran JM, de Winde JH, Westerhoff HV, Pronk JT, Bakker BM (2007) ​The fluxes through glycolytic enzymes in Saccharomyces cerevisiae are predominantly regulated at posttranscriptional levels. Proc Natl Acad Sci U S A 104:15753-15758

  • Dashko S, Zhou N, Compagno C, Piškur J (2014) Why, when, and how did yeast evolve alcoholic fermentation? FEMS Yeast Res 14:826–832

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Deken RH (1966) The Crabtree effect: a regulatory system in yeast. Microbiology 44:149–156

    Google Scholar 

  • Desler C, Hansen TL, Frederiksen JB, Marcker ML, Singh KK, Juel Rasmussen L (2012) Is there a link between mitochondrial reserve respiratory capacity and aging? J Aging Res 2012:1–9

    Article  Google Scholar 

  • Estruch F (2000) Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast. FEMS Microbiol Rev 24:469–486

    Article  PubMed  CAS  Google Scholar 

  • Fendt S-M, Sauer U (2010) Transcriptional regulation of respiration in yeast metabolizing differently repressive carbon substrates. BMC Syst Biol 4(1):12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Galdieri L, Mehrotra S, Yu S, Vancura A (2010) Transcriptional regulation in yeast during diauxic shift and stationary phase. OMICS J Integr Biol 14:629–638

    Article  CAS  Google Scholar 

  • Godard P, Urrestarazu A, Vissers S, Kontos K, Bontempi G, van Helden J, Andre B (2007) Effect of 21 different nitrogen sources on global gene expression in the yeast Saccharomyces cerevisiae. Mol Cell Biol 27:3065–3086

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hagman A, Säll T, Piškur J (2014) Analysis of the yeast short-term Crabtree effect and its origin. FEBS J 281:4805–4814

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hess DC, Lu W, Rabinowitz JD, Botstein D (2006) Ammonium toxicity and potassium limitation in yeast. PLoS Biol 4:e351

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ibsen H (1961) The Crabtree effect: a review. Cancer Res 21:829–841

    PubMed  CAS  Google Scholar 

  • Jiranek V, Langridge P, Henschke PA (1995) Amino acid and ammonium utilization by Saccharomyces cerevisiae wine yeasts from a chemically defined medium. Am J Enol Vitic 46:75–83

    CAS  Google Scholar 

  • Kemsawasd V, Viana T, Ardö Y, Arneborg N (2015) Influence of nitrogen sources on growth and fermentation performance of different wine yeast species during alcoholic fermentation. Appl Microbiol Biotechnol 99:10191–10207

    Article  PubMed  CAS  Google Scholar 

  • Kessi-Pérez EI, Araos S, García V, Salinas F, Abarca V, Larrondo LF, Martínez C, Cubillos FA (2016) RIM15 antagonistic pleiotropy is responsible for differences in fermentation and stress response kinetics in budding yeast. FEMS Yeast Res 16:fow021

    Article  PubMed  CAS  Google Scholar 

  • Ljungdahl PO, Daignan-Fornier B (2012) Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae. Genetics 190:885–929

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Madrigal-Perez LA, Nava GM, González-Hernández JC, Canizal-Garcia M, Ramos-Gomez M (2015) Resveratrol increases glycolytic flux in Saccharomyces cerevisiae via a SNF1-dependet mechanism. J Bioenerg Biomembr 47:331–336

    Article  PubMed  CAS  Google Scholar 

  • Madrigal-Perez LA, Canizal-Garcia M, González-Hernández JC, Reynoso-Camacho R, Nava GM, Ramos-Gomez M (2016) Energy-dependent effects of resveratrol in Saccharomyces cerevisiae. Yeast 33:227–234

    Article  PubMed  CAS  Google Scholar 

  • Magasanik B (2003) Ammonia assimilation by Saccharomyces cerevisiae. Eukaryot Cell 2:827–829

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marques WL, Raghavendran V, Stambuk BU, Gombert AK (2016) Sucrose and Saccharomyces cerevisiae: a relationship most sweet. FEMS Yeast Res 16:fov107

    Article  PubMed  CAS  Google Scholar 

  • Marsit S, Mena A, Bigey F, Sauvage F-X, Couloux A, Guy J, Legras J-L, Barrio E, Dequin S, Galeote V (2015) Evolutionary advantage conferred by an eukaryote-to-eukaryote gene transfer event in wine yeasts. Mol. Biol. Evol. 32:1695–1707

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martínez-Moreno R, Morales P, Gonzalez R, Mas A, Beltran G (2012) Biomass production and alcoholic fermentation performance of Saccharomyces cerevisiae as a function of nitrogen source. FEMS Yeast Res 12:477–485

    Article  PubMed  CAS  Google Scholar 

  • Mendes-Ferreira A, Mendes-Faia A, Leão C (2004) Growth and fermentation patterns of Saccharomyces cerevisiae under different ammonium concentrations and its implications in winemaking industry. J Appl Microbiol 97:540–545

    Article  PubMed  CAS  Google Scholar 

  • Nicholls DG, Ferguson SJ (2013) Bioenergetics. Academic Press, London, 434 p

  • Oomuro M, Kato T, Zhou Y, Watanabe D, Motoyama Y, Yamagishi H, Akao T, Aizawa M (2016) Defective quiescence entry promotes the fermentation performance of bottom-fermenting brewer’s yeast. J Biosci Bioeng 122:577–582

    Article  PubMed  CAS  Google Scholar 

  • Otterstedt K, Larsson C, Bill RM, Ståhlberg A, Boles E, Hohmann S, Gustafsson L (2004) Switching the mode of metabolism in the yeast Saccharomyces cerevisiae. EMBO Rep 5:532–537

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pedruzzi I, Bürckert N, Egger P, De Virgilio C (2000) Saccharomyces cerevisiae Ras/cAMP pathway controls post-diauxic shift element-dependent transcription through the zinc finger protein Gis1. EMBO J 19:2569–2579

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Piškur J, Rozpędowska E, Polakova S, Merico A, Compagno C (2006) How did Saccharomyces evolve to become a good brewer? Trends Genet 22:183–186

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer T, Morley A (2014) An evolutionary perspective on the Crabtree effect. Front Mol Biosci 1:17

  • Rollero S, Bloem A, Camarasa C, Sanchez I, Ortiz-Julien A, Sablayrolles J-M, Dequin S, Mouret J-R (2014) Combined effects of nutrients and temperature on the production of fermentative aromas by Saccharomyces cerevisiae during wine fermentation. Appl Microbiol Biotechnol 99:2291–2304

    Article  PubMed  CAS  Google Scholar 

  • Stambuk BU, Batista AU, De Araujo PS (2000) Kinetics of active sucrose transport in Saccharomyces cerevisiae. J Biosci Bioeng 89(2):212–214

    Article  PubMed  CAS  Google Scholar 

  • Swinnen E, Wanke V, Roosen J, Smets B, Dubouloz F, Pedruzzi I, Cameroni E, De Virgilio C, Winderickx J (2006) Rim15 and the crossroads of nutrient signalling pathways in Saccharomyces cerevisiae. Cell Div 1:3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takagi H, Taguchi J, Kaino T (2016) Proline accumulation protects Saccharomyces cerevisiae cells in the stationary phase from ethanol stress by reducing reactive oxygen species levels: proline protects yeast cells from ethanol by reducing ROS levels. Yeast 33:355–363

    Article  PubMed  CAS  Google Scholar 

  • Ter Linde JJ, Steensma HY (2002) A microarray-assisted screen for potential Hap1 and Rox1 target genes in Saccharomyces cerevisiae. Yeast 19:825–840

    Article  PubMed  CAS  Google Scholar 

  • Tesnière C, Delobel P, Pradal M, Blondin B (2013) Impact of nutrient imbalance on wine alcoholic fermentations: nitrogen excess enhances yeast cell death in lipid-limited must. PLoS One 8:e61645

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thevelein JM (1994) Signal transduction in yeast. Yeast 10:1753–1790

    Article  PubMed  CAS  Google Scholar 

  • Varela C, Pizarro F, Agosin E (2004) Biomass content governs fermentation rate in nitrogen-deficient wine musts. Appl Environ Microbiol 70:3392–3400

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Watanabe D, Zhou Y, Hirata A, Sugimoto Y, Takagi K, Akao T, Ohya Y, Takagi H, Shimoi H (2015) Inhibitory role of greatwall-like protein kinase Rim15p in alcoholic fermentation via upregulating the UDP-glucose synthesis pathway in Saccharomyces cerevisiae. Appl Environ Microbiol AEM 02977-15

  • Watanabe D, Kaneko A, Sugimoto Y, Ohnuki S, Takagi H, Ohya Y (2017) Promoter engineering of the Saccharomyces cerevisiae RIM15 gene for improvement of alcoholic fermentation rates under stress conditions. J Biosci Bioeng 123:183–189

    Article  PubMed  CAS  Google Scholar 

  • Wood IP, Elliston A, Ryden P, Bancroft I, Roberts IN, Waldron KW (2012) Rapid quantification of reducing sugars in biomass hydrolysates: improving the speed and precision of the dinitrosalicylic acid assay. Biomass Bioenergy 44:117–121

    Article  CAS  Google Scholar 

  • Wu JCF, Hamada MS. 2009. Experiments: planning, analysis, and optimization. 2nd ed. Wiley

  • Yoboue ED, Mougeolle A, Kaiser L, Averet N, Rigoulet M, Devin A. 2014. The role of mitochondrial biogenesis and ROS in the control of energy supply in proliferating cells. Biochim. Biophys. Acta BBA-Bioenerg. 1837. 18th European Bioenergetics Conference 2014 Lisbon, Portugal: 1093–1098

  • Zaman S, Lippman SI, Zhao X, Broach JR (2008) How Saccharomyces responds to nutrients. Annu Rev Genet 42:27–81

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Sofia Maria Arvizu-Medrano for the facilities on the use of the BioScreen machine, Eduardo Castaño-Tostado for his assistance with the JMP software analyses, Maria José Armenta-Cardenas for her assistance with kinetic experiments, and Lina Raquel Riego Ruiz for her thoughtful comments on the project.

Funding

This project was supported by grants of the Consejo Nacional de Ciencia y Tecnología (grant number 293940) and Fundación TELMEX-TELCEL (grant number 162005585), both to IKOM. Universidad Autónoma de Querétaro partially funded this work by Fondo de Proyectos Especiales de Rectoría (FOPER) (project number 239471) to IKOM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Regalado-Gonzalez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

ESM 1

(PDF 934 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olivares-Marin, I.K., Madrigal-Perez, L.A., Canizal-Garcia, M. et al. Interactions between carbon and nitrogen sources depend on RIM15 and determine fermentative or respiratory growth in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 102, 4535–4548 (2018). https://doi.org/10.1007/s00253-018-8951-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-8951-3

Keywords

Navigation